電源音頻噪聲

背景
現(xiàn)代開關(guān)電源的設(shè)計(jì)要求由效率驅(qū)動(dòng),這不僅包括滿載條件下的效率,還包含斷開電纜連接時(shí)睡眠模式或空載條件下的效率。無論何種電源負(fù)載,電源系統(tǒng)集成商都必須滿足能源之星、80 Plus以及歐盟委員會(huì)的CoC等新規(guī)范。
要滿足這些要求,電源必須將開關(guān)頻率降至20kHz以下,有時(shí)甚至低至幾kHz。由于人耳可以聽到低于20kHz的聲音頻率(而且在2kHz至5kHz之間最敏感),因此很難避免出現(xiàn)音頻噪聲。對(duì)于消費(fèi)者應(yīng)用而言尤其如此,例如所有客廳中都有電話或筆記本電腦充電器,或者LED驅(qū)動(dòng)器,如果產(chǎn)生噪聲,那將是非常煩擾的事情。
電源噪聲的起因
對(duì)音頻噪聲最敏感的電源組件通常是MLC陶瓷電容器、電感器或變壓器。電感器和變壓器等磁性組件在一定頻率下會(huì)受高壓脈沖應(yīng)力的影響,導(dǎo)致物理效應(yīng),例如線圈上的反向壓電效應(yīng)或鐵芯上的磁致伸縮。
反向壓電效應(yīng)和磁致伸縮是將施加的電能轉(zhuǎn)換為機(jī)械力的作用機(jī)制。這種機(jī)械力使線圈或鐵芯振動(dòng),從而使其周圍的空氣移位并表現(xiàn)為聲波。由于這些振動(dòng)會(huì)在諧振頻率上被放大多倍,因此說到底,我們要設(shè)法解決的是這些電源組件產(chǎn)生的機(jī)械自諧振頻率(SRF)。
首先,我們需要測(cè)量機(jī)械SRF以查看其是否在音頻噪聲范圍內(nèi)。如果是,則找出諧振的來源。最后,在設(shè)計(jì)階段選擇合適的電氣參數(shù)以限制開關(guān)頻率的范圍。通過避免機(jī)械SRF,從而較輕松地降低噪聲。
機(jī)械自諧振
機(jī)械自諧振現(xiàn)象已經(jīng)有模型可以識(shí)別,并已定義了可用的控件。其中,胡克定律是較為特殊的一種模型。圖1顯示了彈簧質(zhì)量系統(tǒng)的方程式。該系統(tǒng)類似于電感器的螺旋線圈以及焊接了磁性組件的PCB組件的質(zhì)量。

如上圖所示,紅球的質(zhì)量(m)與PCB組件的質(zhì)量相同。位移(x)由反向壓電效應(yīng)或磁致伸縮力引起。施加的力與PCB板重量之間的關(guān)系可以用一個(gè)二階微分方程來完美表述(見圖2)。

因此,該質(zhì)量彈簧系統(tǒng)的諧振頻率可以用公式(1)來計(jì)算:

其中k是彈簧的剛度常數(shù),m是質(zhì)量。
實(shí)驗(yàn)裝置
在實(shí)驗(yàn)中,我們采用MPS的MP174A作為電源變換器,MP174A是一款頻率可調(diào)的恒定峰值電流調(diào)節(jié)器。使用該器件,開關(guān)頻率會(huì)隨著負(fù)載電流和輸出功率的變化而成比例地變化,從而保持穩(wěn)定的調(diào)節(jié)。
圖3顯示的實(shí)驗(yàn)室裝置可用于測(cè)量鼓芯電感器產(chǎn)生的音頻噪聲,并找到其機(jī)械自諧振頻率(SRF)。頻譜分析儀應(yīng)用程序和手機(jī)上的麥克風(fēng)則用于測(cè)量聲音。手機(jī)始終放置在距電感器5厘米處。改變變換器上的負(fù)載電流以掃描不同的開關(guān)頻率,然后通過電話測(cè)量產(chǎn)生的聲音。

示波器可以在不同的負(fù)載電流下測(cè)量開關(guān)頻率,這樣,就可以在每種負(fù)載電流下測(cè)量聲音。示波器波形與在每個(gè)負(fù)載電流下用手機(jī)測(cè)得的頻率峰值相匹配。負(fù)載電流可在10%至80%之間變化。高于滿載80%不做測(cè)量,因?yàn)槠溟_關(guān)頻率已超出了可聞范圍(> 20kHz)。?
圖4顯示了在其中一種負(fù)載電流下捕獲的波形。13.16kHz的頻率與該應(yīng)用程序產(chǎn)生的頻譜相匹配,該應(yīng)用程序捕獲到了鼓芯電感器在13.242kHz頻率下的聲音峰值。
繼續(xù)閱讀 >>>請(qǐng)復(fù)制下方鏈接進(jìn)入MPS官網(wǎng)查看:
https://www.monolithicpower.cn/202302_9