基于轉(zhuǎn)化醫(yī)學(xué)的中醫(yī)藥防治血管生成相關(guān)心血管疾病概況
導(dǎo)讀
心血管疾病作為困擾人類的重大醫(yī)學(xué)和科學(xué)難題,嚴(yán)重危害人類健康和生命安全,仍然是目前人類的首要死因。中醫(yī)藥在防治心血管疾病中發(fā)揮著不可替代的作用,具有自身的特色和明確的優(yōu)勢,然而其機(jī)理的不清楚阻礙了其進(jìn)一步推廣,也不利于心血管疾病的預(yù)防和治療。轉(zhuǎn)化醫(yī)學(xué)倡導(dǎo)學(xué)科間交叉整合、學(xué)組間交流協(xié)作,在基礎(chǔ)研究和臨床應(yīng)用間建立有效的互動(dòng)聯(lián)系,引領(lǐng)更多醫(yī)學(xué)研究聚焦臨床疾病的防治,加速由“發(fā)現(xiàn)”到“實(shí)現(xiàn)”的轉(zhuǎn)變,最終使患者受益,即“來自臨床,服務(wù)臨床”,為中醫(yī)藥學(xué)這一來源于臨床實(shí)踐的學(xué)科發(fā)展和研究方向提供了借鑒模式?;诖耍紤]到血管生成在心血管疾病的發(fā)生和轉(zhuǎn)歸中扮演的重要角色,本文在轉(zhuǎn)化醫(yī)學(xué)理念指導(dǎo)下,從理論基礎(chǔ)、病機(jī)病理、應(yīng)用方藥和物質(zhì)基礎(chǔ)四個(gè)方面,整理了血管生成相關(guān)心血管疾病的中醫(yī)藥論治概況,旨在從臨床實(shí)踐經(jīng)驗(yàn)到現(xiàn)代基礎(chǔ)研究總結(jié)中醫(yī)藥防治的轉(zhuǎn)化醫(yī)學(xué)經(jīng)驗(yàn),為相關(guān)疾病的基礎(chǔ)研究和臨床診治提供依據(jù)。
Citation:Cui HR, Zheng JX, Zhang XY, Shang HC. Prevention and treatment of traditional Chinese medicine against angiogenesis-related cardiovascular diseases based on translational medicine. TMR Modern Herbal Medicine. 2022; 5(2):8.
1. 前言
心血管系統(tǒng)是脊椎動(dòng)物胚胎發(fā)育的第一個(gè)功能器官系統(tǒng),也是維持體內(nèi)組織平衡的基礎(chǔ)。心血管疾病作為困擾人類的重大科學(xué)難題,嚴(yán)重危害人類健康和生命安全,過去30年來,相關(guān)領(lǐng)域的基礎(chǔ)和臨床研究取得了可觀的進(jìn)步,但心血管疾病仍然是目前人類最首要的死因(如圖1所示)。血管生成(angiogenesis)是血管結(jié)構(gòu)形成的基礎(chǔ),血管生長過程的任一環(huán)節(jié)出現(xiàn)問題,都會(huì)引起血管功能的障礙,從而導(dǎo)致人類多種疾病的發(fā)生。近年來,科學(xué)家們一直關(guān)注血管生成在心血管疾病和動(dòng)脈粥樣硬化中所扮演的不同角色。研究表明,促血管生成因子被廣泛認(rèn)為是治療缺血性心臟病及增強(qiáng)動(dòng)脈內(nèi)皮保護(hù)功能的強(qiáng)有力藥物,目前廣泛開展的經(jīng)皮冠狀動(dòng)脈腔內(nèi)成形術(shù)和冠狀動(dòng)脈旁路移植術(shù)等介入研究,僅適于直徑大于2mm的動(dòng)脈,對直徑小于2mm的動(dòng)脈和一些冠狀動(dòng)脈彌漫性病變、多次手術(shù)或缺乏動(dòng)靜脈移植物等的患者仍無法進(jìn)行以上的再血管化治療;而促進(jìn)缺血區(qū)的治療性血管新生策略可以通過刺激心肌缺血區(qū)小血管生長和側(cè)枝循環(huán)的形成實(shí)現(xiàn)心肌缺血區(qū)的自我搭橋,對相當(dāng)數(shù)量的彌漫性冠脈病變以及難以接受傳統(tǒng)血管重建治療的患者,可能成為一種極具吸引力的治療模式。相反,新生血管的形成促進(jìn)了動(dòng)脈粥樣硬化斑塊的病變,并且是導(dǎo)致斑塊破裂不穩(wěn)定性的關(guān)鍵因素,抑制性血管生成策略可以有效改善動(dòng)脈粥樣硬化的疾病進(jìn)展。
中醫(yī)藥在防治心血管疾病中發(fā)揮著不可替代的作用,具有自身的特色和明確的優(yōu)勢,然而其機(jī)理的不清楚阻礙了其進(jìn)一步推廣,也不利于人類疾病的預(yù)防和治療。1992年,Science雜志發(fā)表文章,提出了“Bench to Bedside”(B to B)概念,意思是將實(shí)驗(yàn)室的研究發(fā)現(xiàn)轉(zhuǎn)化為臨床使用的診療技術(shù)和方法的過程。1996年,Lancet雜志首次提出了“Translational Medicine”,即轉(zhuǎn)化醫(yī)學(xué)這一新名詞,其強(qiáng)調(diào)基礎(chǔ)科學(xué)與臨床實(shí)踐的有機(jī)結(jié)合。2003年,美國國立衛(wèi)生研究院 Zerhouni 教授提出轉(zhuǎn)化醫(yī)學(xué)是把醫(yī)學(xué)基礎(chǔ)研究成果快速有效地轉(zhuǎn)化為臨床治療手段,強(qiáng)調(diào)從實(shí)驗(yàn)室到病床旁的連接,通常稱之為“從實(shí)驗(yàn)室到病床”(Bench to Bedside),其目標(biāo)是改變基礎(chǔ)醫(yī)學(xué)與臨床醫(yī)學(xué)、預(yù)防醫(yī)學(xué)、藥物研發(fā)和健康促進(jìn)之間相對獨(dú)立的研究現(xiàn)狀,建立彼此之間的緊密聯(lián)系,縮短從實(shí)驗(yàn)室研究到臨床診療的過程,將基礎(chǔ)研究獲得的成果快速轉(zhuǎn)化為預(yù)防、診斷和治療的方法和產(chǎn)品;同時(shí),將臨床發(fā)現(xiàn)的問題及時(shí)反饋到實(shí)驗(yàn)室,從而進(jìn)行更深入的研究,推動(dòng)醫(yī)學(xué)全面可持續(xù)的發(fā)展。轉(zhuǎn)化醫(yī)學(xué)倡導(dǎo)學(xué)科間交叉整合、學(xué)組間交流協(xié)作,在基礎(chǔ)研究和臨床應(yīng)用間建立有效的互動(dòng)聯(lián)系,引領(lǐng)更多醫(yī)學(xué)研究聚焦臨床疾病的防治,加速由 “發(fā)現(xiàn)”到“實(shí)現(xiàn)”的轉(zhuǎn)變,最終使患者受益,即“來自臨床,服務(wù)臨床”。此后,轉(zhuǎn)化醫(yī)學(xué)越來越受到全球醫(yī)藥界關(guān)注,目前已成為醫(yī)藥領(lǐng)域新的研究及應(yīng)用熱點(diǎn),也為理解中醫(yī)藥防治血管生成相關(guān)心血管疾病提供了新的契機(jī)?;诖?,本文基于轉(zhuǎn)化醫(yī)學(xué)思想,從理論基礎(chǔ)、病機(jī)病理、應(yīng)用方藥和物質(zhì)基礎(chǔ)三個(gè)方面,整理了血管生成相關(guān)心血管疾病的中醫(yī)藥論治概況,旨在從臨床實(shí)踐經(jīng)驗(yàn)到現(xiàn)代基礎(chǔ)研究總結(jié)中醫(yī)藥防治該疾病的轉(zhuǎn)化醫(yī)學(xué)經(jīng)驗(yàn),為相關(guān)基礎(chǔ)研究和臨床診治提供依據(jù)。

圖1. 心血管疾病藥物療法的局限性
2. 理論基礎(chǔ)
“經(jīng)脈為里,支而橫者為絡(luò)”,作為中醫(yī)藥防治血管生成相關(guān)心血管疾病的核心指導(dǎo)原則,絡(luò)脈絡(luò)病理論是中醫(yī)藥理論體系中重要組成部分,自內(nèi)經(jīng)、難經(jīng)中提出絡(luò)脈的概念,奠定了理論基礎(chǔ)以來,于漢代以《傷寒雜病論》為代表應(yīng)用于臨床,至明清時(shí)期,以葉天士、喻昌為代表的醫(yī)家為該理論發(fā)展做出了一定貢獻(xiàn),迄今,現(xiàn)代醫(yī)家努力嘗試以現(xiàn)代科技闡釋絡(luò)脈絡(luò)病學(xué)說的科學(xué)內(nèi)涵,將現(xiàn)代研究成果結(jié)合到絡(luò)脈絡(luò)病理論及臨床論治中,承前人之所成,啟后世之法門。
2.1 春秋戰(zhàn)國時(shí)期
春秋戰(zhàn)國時(shí)期提出了絡(luò)脈的概念,奠定了絡(luò)脈絡(luò)病理論的基礎(chǔ)。《黃帝內(nèi)經(jīng)》提出絡(luò)的概念,出現(xiàn)了絡(luò)、絡(luò)脈、血絡(luò)、陽絡(luò)、陰絡(luò)等以絡(luò)為中心的提法,《靈樞·脈度》記載:“經(jīng)脈為里,支而橫者為絡(luò),絡(luò)之別者為孫”,初步奠定了絡(luò)脈絡(luò)病理論的基礎(chǔ)?!饵S帝內(nèi)經(jīng)》認(rèn)為,絡(luò)脈的生理功能包括貫通營衛(wèi)、津血互滲作用、滲灌氣血、溝通表里經(jīng)脈等,在絡(luò)病的診治方面提出了結(jié)絡(luò)、血絡(luò)、盛絡(luò)、橫絡(luò)、虛絡(luò)等專業(yè)術(shù)語及“絡(luò)病治血”、“以見通之”等治則。
2.2 漢代至明末
漢代張仲景將前人總結(jié)的絡(luò)脈絡(luò)病理論成果從辨證論治的角度應(yīng)用于臨床實(shí)踐,其著作《傷寒論》、《金匱要略》論述了絡(luò)脈病證的病機(jī)、治法及方藥,認(rèn)為絡(luò)病的病機(jī)包括外邪入絡(luò)、絡(luò)脈損傷、絡(luò)脈空虛、瘀血凝絡(luò)、痰飲阻絡(luò)等,主要采用辛溫通絡(luò)、化痰逐瘀通絡(luò)、活血通絡(luò)、行氣化瘀通絡(luò)、蟲蟻搜剔通絡(luò)等治法,常用方藥包括旋覆花湯、下瘀血湯、大黃蟲丸等,為后世醫(yī)家提供了理論與實(shí)踐依據(jù)。隋唐宋金元時(shí)期,王叔和、巢元方、朱丹溪等醫(yī)家論述了絡(luò)脈相關(guān)的癥候病因與小活絡(luò)丹、芎歸湯等治法方藥,發(fā)展了絡(luò)脈絡(luò)病理論。
2.3 明清時(shí)期
明清時(shí)期,溫病學(xué)派的發(fā)展從病因分析和診治要點(diǎn)等方面為絡(luò)脈絡(luò)病理論的學(xué)說完整性發(fā)揮了重要作用。葉天士提出了“久病入絡(luò)”、“久痛入絡(luò)”等絡(luò)病特點(diǎn),在《臨證指南醫(yī)案》中記載了癥積、痹癥等諸多絡(luò)病相關(guān)診治的病案,總結(jié)了絡(luò)病的常見病證與論治方法,善用辛溫通絡(luò)、辛潤通絡(luò)、辛香通絡(luò)、蟲蟻通絡(luò)、辛甘通補(bǔ)、滋潤通補(bǔ)等方藥,提倡“絡(luò)以辛為泄”、辛潤結(jié)合的用藥特點(diǎn)。吳鞠通強(qiáng)調(diào)“初病入絡(luò)”,重視毒邪對絡(luò)病的致病特點(diǎn),發(fā)展了葉氏“久病入絡(luò)”、“久痛入絡(luò)的學(xué)術(shù)思想?!?/p>
2.4 近現(xiàn)代
近現(xiàn)代,隨著疾病譜的變化,現(xiàn)代醫(yī)家借鑒現(xiàn)代醫(yī)學(xué)的概念及診治方法,致力于發(fā)展絡(luò)脈絡(luò)病理論。王永炎院士系統(tǒng)總結(jié)了絡(luò)脈研究,提出了絡(luò)病的概念及診療新思路,為腦病的理論和診療作出了突出的貢獻(xiàn);張伯禮院士提出久病入絡(luò)的現(xiàn)代病理實(shí)質(zhì);吳以嶺院士提出基于絡(luò)病理論的絡(luò)脈學(xué)說,系統(tǒng)闡釋了絡(luò)病的癥候特點(diǎn)及辨治方法,為心腦血管疾病的理論和診療創(chuàng)新提供了完整的理論依據(jù)。
3. 中醫(yī)學(xué)病機(jī)和現(xiàn)代醫(yī)學(xué)病理
絡(luò)道亢變,涉及到動(dòng)脈粥樣硬化等,這類病證的常見病因包括外感六淫、內(nèi)生七情,如血結(jié)、寒氣、溫邪、邪風(fēng)、木火、暑邪、飲氣、懸飲、虐邪、瘀熱、血傷等邪氣擾動(dòng)絡(luò)脈,導(dǎo)致絡(luò)脈內(nèi)環(huán)境失穩(wěn)定,絡(luò)道增生無制,病變涉及臟腑、氣血津液、陰陽、神志等功能與形質(zhì)變化,如圖1.4所示。例如,“令邪客于皮毛,入舍于孫絡(luò),留而不去,閉塞不通,不得入于經(jīng),流溢于大絡(luò),而生奇病也”?,F(xiàn)代醫(yī)學(xué)認(rèn)為,動(dòng)脈粥樣硬化的危害性在于其不穩(wěn)定斑塊突發(fā)破裂所導(dǎo)致的致命性病變,Paterson第一個(gè)提出血管滋養(yǎng)管是斑塊內(nèi)出血的主要來源;Barger 等人發(fā)現(xiàn)在動(dòng)脈粥樣硬化病人冠狀動(dòng)脈中存在大量斑塊微血管,并且提示斑塊新生血管形成在動(dòng)脈粥樣硬化的發(fā)病機(jī)理中起重要作用;研究表明內(nèi)膜新生血管形成和出血是與易損斑塊密切相關(guān)的組織病理學(xué)特征。不穩(wěn)定斑塊中新生血管的形成增加。這些新生血管具有較弱的完整性從而易發(fā)生泄漏,引起復(fù)發(fā)性出血事件,在此過程中紅細(xì)胞被輸送到斑塊壞死核心,進(jìn)而引起炎癥和氧化應(yīng)激反應(yīng)。單核細(xì)胞,巨噬細(xì)胞,嗜中性粒細(xì)胞和肥大細(xì)胞等促炎癥細(xì)胞從新生血管中滲出并穿過血管外膜,促進(jìn)慢性炎癥的發(fā)生。因此人們認(rèn)為血管形成與心血管事件的發(fā)生相關(guān),并且具有預(yù)測價(jià)值。
絡(luò)脈不充,涉及到缺血性心腦血管疾病,常見病因?yàn)橥飧辛?、?nèi)生七情,導(dǎo)致邪氣阻隔、絡(luò)脈氣血不通,營血虧虛、絡(luò)脈空虛不能內(nèi)守,或病邪傷及絡(luò)脈絡(luò)血,病變涉及臟腑、氣血津液、陰陽、神志等功能與形質(zhì)變化。例如,直接導(dǎo)致死亡的急性缺血性心肌梗死,特征性在于心肌細(xì)胞由于長期缺血,缺氧,導(dǎo)致心肌灌注降低,從而引起心肌損傷、心功能不全和心力衰竭,中醫(yī)學(xué)病機(jī)為心之脈絡(luò)淤塞、脈絡(luò)津血互換障礙導(dǎo)致的心神失養(yǎng)。缺血性心臟病仍位于全球死亡原因首位。自2000年美國心血管病年會(huì)提出“治療性血管新生療法”以來,促血管新生治療藥物一直是生物醫(yī)學(xué)上的研究熱點(diǎn)??茖W(xué)研究表明,經(jīng)促血管新生治療后,心臟缺血區(qū)域新生血管的數(shù)量有所增加,血流量增加,梗死區(qū)域面積縮小,心肌細(xì)胞重新獲得氧氣及營養(yǎng)物質(zhì),局部代謝水平明顯改善。同時(shí)心肌細(xì)胞凋亡和壞死的程度明顯降低,心臟射血分?jǐn)?shù)增加,心功能得以恢復(fù)。因此該治療方法被人們稱之為“藥物性心臟自身搭橋”。多項(xiàng)研究表明當(dāng)機(jī)體處于急性應(yīng)激狀態(tài)時(shí),血管內(nèi)皮生長 因子(VEGF)與堿性成纖維細(xì)胞生長因子(bFGF)共同促進(jìn)著 血管內(nèi)皮細(xì)胞的增殖分化,激活缺血區(qū)域新生血管的形成,從而迅速且有效地促進(jìn)著心肌缺血區(qū)域側(cè)支循環(huán)的重新建立,改善機(jī)體的急性缺血,缺氧狀態(tài)。迄今為止,促新生血管治療的嘗試已產(chǎn)生較好的臨床益處。如圖2所示。

圖2. 血管生成相關(guān)心血管疾病的中醫(yī)學(xué)病機(jī)示意圖
3. 應(yīng)用方藥
3.1 活血化瘀法
“凡血證總以去瘀為要”,活血化瘀通絡(luò)法重在調(diào)和營衛(wèi),養(yǎng)血和絡(luò),扶正培本。常用中藥包括活血化瘀藥(紅花、川芎、郁金、莪術(shù)、姜黃、乳香等),解毒涼血散結(jié)藥(黃連、丹參、白花蛇舌草、苦參、梔子、蒲公英等),補(bǔ)氣護(hù)衛(wèi)藥(黃芪、人參等),藤類藥(大血藤、雞血藤等),蟲類藥(水蛭、土鱉蟲等)。臨床常用復(fù)方包括扶正培本類(平調(diào)飲、扶正抗癌湯、小柴胡湯、肺巖寧方等),活血化瘀類(血府逐瘀湯、桃紅四物湯、瘀毒清等),解毒散結(jié)類(鱉甲煎丸、改良莪術(shù)湯、消痰散結(jié)方、六神丸、清香散等),益氣扶正類(參七湯、補(bǔ)中益氣湯等),祛瘀生新類(生化湯、血府逐瘀湯、復(fù)元活血湯等)。
3.2 溫陽益氣法
“脈為血之府,氣為血之帥”,“經(jīng)脈者,行血?dú)舛鵂I陰陽”,“病在脈,調(diào)之血;病在血,調(diào)之絡(luò)”,調(diào)和血脈、溫陽益氣對促血管生成功能有重要作用,益氣行血以充其脈、益氣生血以通其絡(luò),溫陽則氣血暢行,血脈和調(diào),脈絡(luò)通則絡(luò)道生。常用中藥包括活血化瘀類(川芎、當(dāng)歸、丹參等)、溫陽類(桂枝等)、補(bǔ)益類(黨參、黃芪等)。臨床常用復(fù)方為溫通和脈類(和血生絡(luò)方、溫陽益心方等)。

圖3. 血管生成相關(guān)心血管疾病的中醫(yī)治法方藥
4. 物質(zhì)基礎(chǔ)
進(jìn)一步,對上述方藥涉及主要成分的干預(yù)作用進(jìn)行總結(jié),包括紅花、川芎、莪術(shù)、姜黃、黃連、丹參、白花蛇舌草、苦參、黃芪、人參、當(dāng)歸、水蛭、土鱉蟲、淫羊藿、山茱萸、太子參、天麻、山楂、紅景天、五味子、沙苑子、高良姜、雷公藤、藤黃、柴胡、石斛、穿心蓮、京大戟、青蒿、馬錢子、大黃、梔子等30余種中藥。研究發(fā)現(xiàn),紅花中紅花黃色素能促進(jìn)急性心肌梗死大鼠的梗死邊緣區(qū)血管生成,羥基紅花黃色素A能通過降低基質(zhì)金屬蛋白酶-3的蛋白表達(dá)發(fā)揮血管生成抑制作用;丹參的丹參酮ⅡA、丹參多酚酸和水溶性成分能促進(jìn)血管生成,丹參酮Ⅰ、隱丹參酮、丹酚酸能抑制血管生成;人參的人參皂苷Rg1能促進(jìn)血管生成,人參皂苷Rg3能抑制血管生成;川芎的川芎嗪、姜黃的姜黃素、黃連的小檗堿和黃連堿和鹽酸小檗堿、白花蛇舌草的不同提取物、苦參的苦參堿和氧化苦參堿、土鱉蟲提取物、五味子的五味子多糖、沙苑子的沙苑子苷、高良姜的高良姜素、雷公藤的雷公藤紅素、藤黃的藤黃酸、柴胡的柴胡皂苷b2、石斛的金釵石斛多糖、穿心蓮的穿心蓮內(nèi)酯、京大戟的京大戟二氯甲烷、青蒿的青蒿琥酯、鱉甲水提物、馬錢子的馬錢子堿、大黃的大黃素、梔子的梔子苷被報(bào)道具有顯著的血管生成抑制作用;莪術(shù)中莪術(shù)醇、黃芪的黃芪甲苷和黃芪皂苷Ⅳ和毛蕊異黃酮、當(dāng)歸的當(dāng)歸多糖、水蛭的水蛭素和天然水蛭素、淫羊藿的淫羊藿苷、山茱萸的莫諾苷、太子參的太子參環(huán)肽B、天麻的醇提物、山楂的牡荊苷、紅景天的紅景天苷能促進(jìn)血管生成。如表1所示。
表1. 中藥成分對血管生成的干預(yù)作用

5. 結(jié)語
當(dāng)今轉(zhuǎn)化醫(yī)學(xué)已經(jīng)成為醫(yī)學(xué)研究的重要趨勢和前沿領(lǐng)域,隨著轉(zhuǎn)化醫(yī)學(xué)理念和模式的不斷發(fā)展與成熟,中醫(yī)藥發(fā)展迎來了重大機(jī)遇,同時(shí)也面臨著嚴(yán)峻挑戰(zhàn)。重視臨床需求,結(jié)合臨床,開展基礎(chǔ)研究供給側(cè)創(chuàng)新,是中醫(yī)藥研究的未來方向和關(guān)鍵路徑?!胺蛎}者,血之府也”,臨床治療性血管生成療法即刺激缺血組織促血管生成和建立側(cè)支循環(huán),類似于中醫(yī)藥論治的“生脈”理論,包括“生血”、“生新”、“生肌”;臨床抑制血管生成療法即抑制腫瘤新生血管以阻斷營養(yǎng)供應(yīng),類似于中醫(yī)藥論治的“化瘀散結(jié)”,本文在轉(zhuǎn)化醫(yī)學(xué)思想指導(dǎo)下,綜述了血管生成相關(guān)心血管疾病的中醫(yī)藥防治概況,認(rèn)識(shí)到,中醫(yī)藥學(xué)科惟有利用好自身的優(yōu)勢,強(qiáng)化轉(zhuǎn)化醫(yī)學(xué)研究,同時(shí)充分吸收現(xiàn)代生物醫(yī)學(xué)的技術(shù)手段,才可能培育出一批具有較高臨床價(jià)值的上市品種,從而更好地為人類健康事業(yè)服務(wù)。
參考文獻(xiàn)
1. Li X, Carmeliet P. Targeting angiogenic metabolism in disease. Science. 2018,359(6382):1335-1336.
2. Nemet I, Saha PP, Gupta N, et al. A Cardiovascular Disease-Linked Gut Microbial Metabolite Acts via Adrenergic Receptors. Cell. 2020,180(5):862-877.e22.
3. Das A, Huang GX, Bonkowski MS, et al. Impairment of an Endothelial NAD+-H2S Signaling Network Is a Reversible Cause of Vascular Aging. Cell. 2018,173(1):74-89.
4. Longchamp A, Mirabella T, Arduini A, et al. Amino Acid Restriction Triggers Angiogenesis via GCN2/ATF4 Regulation of VEGF and H2S Production. Cell. 2018,173(1):117-129.
5. Apte RS, Chen DS, Ferrara N. VEGF in Signaling and Disease: Beyond Discovery and Development. Cell. 2019,176(6):1248-1264.
6. Azad T, Janse van Rensburg HJ, Lightbody ED, et al. A LATS biosensor screen identifies VEGFR as a regulator of the Hippo pathway in angiogenesis. Nat Commun. 2018,9(1):1061.
7. Cui H, Guo W, Zhang B, et al. BA-12 Inhibits Angiogenesis via Glutathione Metabolism Activation. Int J Mol Sci. 2019,20(16):4062.
8. Cui H, Yang X, Wang Z, et al. Tetrahydropalmatine triggers angiogenesis via regulation of arginine biosynthesis. Pharmacol Res. 2021,163:105242-105262.
9. Cui HR, Zhang JY, Cheng XH, et al. Immunometabolism at the service of traditional Chinese medicine. Pharmacol Res. 2022,176:106081.
10. Feng W, Ao H, Peng C, et al. Gut microbiota, a new frontier to understand traditional Chinese medicines. Pharmacol Res. 2019,142:176-191.
11. Choi DW. Bench to bedside: the glutamate connection. Science. 1992,258(5080):241-243.
12. Geraghty J. Adenomatous polyposis coli and translational medicine. Lancet. 1996,348(9025):422.
13. Zerhouni E. Medicine. The NIH Roadmap. Science. 2003,302(5642):63-72.
14. Edelman ER, FitzGerald GA. A decade of Science Translational Medicine. Sci Transl Med. 2019,11(489):4327.
15. Zeggini E, Gloyn AL, Barton AC, et al. Translational genomics and precision medicine: Moving from the lab to the clinic. Science. 2019,365(6460):1409-1413.
16. Pulendran B, Davis MM. The science and medicine of human immunology. Science. 2020,369(6511):4014.
17. Xiao W, Jia Z, Zhang Q, et al. Inflammation and oxidative stress, rather than hypoxia, are predominant factors promoting angiogenesis in the initial phases of atherosclerosis. Mol Med Rep. 2015,12(3):3315-3322.
18. Batty JA, Subba S, Luke P, et al. Intracoronary Imaging in the Detection of Vulnerable Plaques. Curr Cardiol Rep. 2016,18(3):28.
19. Chistiakov DA, Orekhov AN, Bobryshev YV. Contribution of neovascularization and intraplaque haemorrhage to atherosclerotic plaque progression and instability. Acta Physiol (Oxf). 2015,213(3):539-553.
20. Corliss BA, Azimi MS, Munson JM, et al. Macrophages: An Inflammatory Link between Angiogenesis and Lymphangiogenesis. Microcirculation. 2016,23(2):95-121.
21. Nabeebaccus A, Zheng S, Shah AM. Heart failure-potential new targets for therapy. Br Med Bull. 2016,119(1):99-110.
22. Mahecha AM, Wang H. The influence of vascular endothelial growth factor-A and matrix metalloproteinase-2 and -9 in angiogenesis, metastasis, and prognosis of endometrial cancer. Onco Targets Ther. 2017,10:4617-4624.
23. Schmidt DE, Manca M, Hoefer IE. Circulating endothelial cells in coronary artery disease and acute coronary syndrome. Trends Cardiovasc Med. 2015,25(7):578-587.
24. Itoh N, Ohta H, Nakayama Y, et al. Roles of FGF Signals in Heart Development, Health, and Disease. Front Cell Dev Biol. 2016,4:110.
25. Cui H, Zhang B, Li G, et al. Identification of a Quality Marker of Vinegar-Processed Curcuma Zedoaria on Oxidative Liver Injury. Molecules. 2019,24(11):2073.
26. Bu L, Dai O, Zhou F, et al. Traditional Chinese medicine formulas, extracts, and compounds promote angiogenesis. Biomed Pharmacother. 2020,132:110855.
27. Guo D, Murdoch CE, Liu T, et al. Therapeutic Angiogenesis of Chinese Herbal Medicines in Ischemic Heart Disease: A Review. Front Pharmacol. 2018,9:428.
28. Gao L, Cao M, Li JQ, et al. Traditional Chinese Medicine Network Pharmacology in Cardiovascular Precision Medicine. Curr Pharm Des. 2021,27(26):2925-2933.
29. Wei G, Yin Y, Duan J, et al. Hydroxysafflor yellow A promotes neovascularization and cardiac function recovery through HO-1/VEGF-A/SDF-1α cascade. Biomed Pharmacother. 2017,88:409-420.
30. Zou J, Wang N, Liu M, et al. Nucleolin mediated pro-angiogenic role of Hydroxysafflor Yellow A in ischaemic cardiac dysfunction: Post-transcriptional regulation of VEGF-A and MMP-9. J Cell Mol Med. 2018,22(5):2692-2705.
31. Zhang C, Shao Z, Chen Z, et al. Hydroxysafflor yellow A promotes multiterritory perforating flap survival: an experimental study. Am J Transl Res. 2020,12(8):4781-4794.
32. Xu X, Wu L, Zhou X, et al. Cryptotanshinone inhibits VEGF-induced angiogenesis by targeting the VEGFR2 Signaling pathway. Microvasc Res. 2017,111:25-31.
33. Chen Q, Zhuang Q, Mao W, et al. Inhibitory effect of cryptotanshinone on angiogenesis and Wnt/β-catenin Signaling pathway in human umbilical vein endothelial cells. Chin J Integr Med. 2014,20(10):743-50.
34. Guo R, Li L, Su J, et al. Pharmacological Activity and Mechanism of Tanshinone IIA in Related Diseases. Drug Des Devel Ther. 2020,14:4735-4748.
35. Lee HP, Liu YC, Chen PC, et al. Tanshinone IIA inhibits angiogenesis in human endothelial progenitor cells in vitro and in vivo. Oncotarget. 2017,8(65):109217-109227.
36. Li Z, Zhang S, Cao L, et al. Tanshinone IIA and Astragaloside IV promote the angiogenesis of mesenchymal stem cell-derived endothelial cell-like cells via upregulation of Cx37, Cx40 and Cx43. Exp Ther Med. 2018,15(2):1847-1854.
37. Li CL, Liu B, Wang ZY, et al. Salvianolic acid B improves myocardial function in diabetic cardiomyopathy by suppressing IGFBP3. J Mol Cell Cardiol. 2020,139:98-112.
38. Yu LJ, Zhang KJ, Zhu JZ, e al. Salvianolic Acid Exerts Cardioprotection through Promoting Angiogenesis in Animal Models of Acute Myocardial Infarction: Preclinical Evidence. Oxid Med Cell Longev. 2017,2017:8192383-8192399.
39. Chen J, Wang Y, Wang S, et al. Salvianolic acid B and ferulic acid synergistically promote angiogenesis in HUVECs and zebrafish via regulating VEGF Signaling. J Ethnopharmacol. 2022,283:114667.
40. Chen J, Zhang X, Liu X, et al. Ginsenoside Rg1 promotes cerebral angiogenesis via the PI3K/Akt/mTOR Signaling pathway in ischemic mice. Eur J Pharmacol. 2019,856:172418.
41. Kwok HH, Chan LS, Poon PY, et al. Ginsenoside-Rg1 induces angiogenesis by the inverse regulation of MET tyrosine kinase receptor expression through miR-23a. Toxicol Appl Pharmacol. 2015,287(3):276-283.
42. Nakhjavani M, Smith E, Townsend AR, et al. Anti-Angiogenic Properties of Ginsenoside Rg3. Molecules. 2020,25(21):4905-4926.
43. Keung MH, Chan LS, Kwok HH, et al. Role of microRNA-520h in 20(R)-ginsenoside-Rg3-mediated angiosuppression. J Ginseng Res. 2016 Apr;40(2):151-159.
44. Nakhjavani M, Smith E, Yeo K, et al. Anti-Angiogenic Properties of Ginsenoside Rg3 Epimers: In Vitro Assessment of Single and Combination Treatments. Cancers (Basel). 2021,13(9):2223.
45. Zhu X, Shan Y, Yu M, et al. Tetramethylpyrazine Ameliorates Peritoneal Angiogenesis by Regulating VEGF/Hippo/YAP Signaling. Front Pharmacol. 2021,12:649581.
46. Lin J, Wang Q, Zhou S, et al. Tetramethylpyrazine: A review on its mechanisms and functions. Biomed Pharmacother. 2022,150:113005-113032.
47. Yuan R, Shi W, Xin Q, et al. Tetramethylpyrazine and Paeoniflorin Inhibit Oxidized LDL-Induced Angiogenesis in Human Umbilical Vein Endothelial Cells via VEGF and Notch Pathways. Evid Based Complement Alternat Med. 2018, 2018:3082507-3082532.
48. Qing L, Wu P, Zhou Z, et al. Tetramethylpyrazine improved the survival of multiterritory perforator flaps by inducing angiogenesis and suppressing apoptosis via the Akt/Nrf2 pathway. Drug Des Devel Ther. 2019,13:1437-1447.
49. Bhandarkar SS, Arbiser JL. Curcumin as an inhibitor of angiogenesis. Adv Exp Med Biol. 2007,595:185-195.
50. Norooznezhad F, Rodriguez-Merchan EC, et al. Curcumin: hopeful treatment of hemophilic arthropathy via inhibition of inflammation and angiogenesis. Expert Rev Hematol. 2020,13(1):5-11.
51. Ghorbanzadeh V, Pourheydar B, Dariushnejad H, et al. Curcumin improves angiogenesis in the heart of aged rats: Involvement of TSP1/NF-κB/VEGF-A Signaling. Microvasc Res. 2022,139:104258-104267.
52. Ghandadi M, Sahebkar A. Curcumin: An Effective Inhibitor of Interleukin-6. Curr Pharm Des. 2017,23(6):921-931.
53. Zhu J, Cao D, Guo C, et al. Berberine Facilitates Angiogenesis Against Ischemic Stroke Through Modulating Microglial Polarization via AMPK Signaling. Cell Mol Neurobiol. 2019,39(6):751-768.
54. Jin F, Xie T, Huang X, et al. Berberine inhibits angiogenesis in glioblastoma xenografts by targeting the VEGFR2/ERK pathway. Pharm Biol. 2018,56(1):665-671.
55. Banaei P, Nazem F, Nazari A, et al. Preconditioning Effect of High-Intensity Interval Training (HIIT) and Berberine Supplementation on the Gene Expression of Angiogenesis Regulators and Caspase-3 Protein in the Rats with Myocardial Ischemia-Reperfusion (IR) Injury. Biomed Res Int. 2020,2020:4104965-4104992.
56. Liu H, Ren X, Ma C. Effect of Berberine on Angiogenesis and HIF-1/ VEGF Signal Transduction Pathway in Rats with Cerebral Ischemia - Reperfusion Injury. J Coll Physicians Surg Pak. 2018,28(10):753-757.
57. Ao L, Gao H, Jia L, et al. Matrine inhibits synovial angiogenesis in collagen-induced arthritis rats by regulating HIF-VEGF-Ang and inhibiting the PI3K/Akt Signaling pathway. Mol Immunol. 2022,141:13-20.
58. Zhao XB, Qin Y, Niu YL, et al. Matrine inhibits hypoxia/reoxygenation-induced apoptosis of cardiac microvascular endothelial cells in rats via the JAK2/STAT3 Signaling pathway. Biomed Pharmacother. 2018,106:117-124.
59. Avila-Carrasco L, Majano P, Sánchez-Toméro JA, et al. Natural Plants Compounds as Modulators of Epithelial-to-Mesenchymal Transition. Front Pharmacol. 2019,10:715-734.
60. Wang WJ, Ma YM, He MT, et al. Oxymatrine Alleviates Hyperglycemic Cerebral Ischemia/Reperfusion Injury via Protecting Microvessel. Neurochem Res. 2022,47(5):1369-1382.
61. Liao W, Chen Y, Zhu Z, et al. Vinegar-processed Curcuma phaeocaulis promotes anti-angiogenic activity and reduces toxicity in zebrafish and rat models. Pharm Biol. 2021,59(1):410-417.
62. Cheng S, Zhang X, Feng Q, et al. Astragaloside IV exerts angiogenesis and cardioprotection after myocardial infarction via regulating PTEN/PI3K/Akt Signaling pathway. Life Sci. 2019,227:82-93.
63. Wang B, Zhang C, Chu D, et al. Astragaloside IV improves angiogenesis under hypoxic conditions by enhancing hypoxia?inducible factor?1α SUMOylation. Mol Med Rep. 2021,23(4):244.
64. Zhang W, Zhang L, Zhou H, et al. Astragaloside IV Alleviates Infarction Induced Cardiomyocyte Injury by Improving Mitochondrial Morphology and Function. Front Cardiovasc Med. 2022 Feb 21;9:810541-810573.
65. Li L, Gan H, Jin H, et al. Astragaloside IV promotes microglia/macrophages M2 polarization and enhances neurogenesis and angiogenesis through PPAR pathway after cerebral ischemia/reperfusion injury in rats. Int Immunopharmacol. 2021,92:107335.
66. Pang X, Zhang Y, Peng Z, et al. Hirudin reduces nephropathy microangiopathy in STZ-induced diabetes rats by inhibiting endothelial cell migration and angiogenesis. Life Sci. 2020,255:117779.
67. Liu J, Chen B, Zhao B, et al. Effect of hirudin on arterialized venous flap survival in rabbits. Biomed Pharmacother. 2021,142:111981.
68. Cui H, Yang A, Zhou H, et al. Thrombin-induced miRNA-24-1-5p upregulation promotes angiogenesis by targeting prolyl hydroxylase domain 1 in intracerebral hemorrhagic rats. J Neurosurg. 2020,134(5):1515-1526.
69. Yuan R, Shi WL, Xin QQ, et al. Holistic Regulation of Angiogenesis with Chinese Herbal Medicines as a New Option for Coronary Artery Disease. Evid Based Complement Alternat Med. 2018,2018:3725962.
70. Hong M, Shi H, Wang N, et al. Dual Effects of Chinese Herbal Medicines on Angiogenesis in Cancer and Ischemic Stroke Treatments: Role of HIF-1 Network. Front Pharmacol. 2019,10:696.
期刊介紹

TMR Modern Herbal Medicine?
(ISSN: 2537-9798) 是由 TMR Publishing Group 支持的同行評審、開放獲取的季刊。
TMR Modern Herbal Medicine 專注于中草藥及天然藥用植物的相關(guān)研究,包括但不限于:各種中草藥及天然藥用植物的栽培、鑒定和加工,中草藥及天然藥物成分、單藥或復(fù)方藥的藥理學(xué)、毒理學(xué)研究,中草藥及天然藥物的臨床研究,結(jié)合現(xiàn)代科學(xué)技術(shù)進(jìn)行的藥物研發(fā)以及所涉及的新方法和新技術(shù),如人工智能、數(shù)據(jù)科學(xué)、納米醫(yī)學(xué)、網(wǎng)絡(luò)藥理學(xué)、系統(tǒng)生物學(xué)等。
重點(diǎn)出版植物、天然產(chǎn)物等與中草藥相關(guān)研究的創(chuàng)新理論、創(chuàng)新成果、創(chuàng)新技術(shù)、創(chuàng)新方法和臨床應(yīng)用,促進(jìn)傳統(tǒng)醫(yī)學(xué)的現(xiàn)代化、規(guī)范化和國際化。期刊欄目包括文章、綜述、研究方案、研究報(bào)告、病例報(bào)告、信函等。

掃碼查看原文內(nèi)容
重要通知
1
專欄(專刊)征稿,長期有效,即時(shí)online
2
??寮?,免審稿費(fèi),免版面費(fèi),初審1-3天
3
招聘通知:本刊長期招聘中草藥醫(yī)學(xué)研究相關(guān)的審稿專家和青年編委,擇優(yōu)聘用正式編委,歡迎郵箱投遞簡歷,或咨詢吳編輯 18810621023(同微信)。
4

肺部給藥???/p>
5

毒理研究???/p>
6

天然產(chǎn)物???/p>
7
在線投稿:
https://submission.tmrjournals.com/dashboard
8
聯(lián)系我們:tmrmhm@tmrjournals.com
編輯 |?TMRMHM? 排版?|?TMRMHM