最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網(wǎng) 會(huì)員登陸 & 注冊(cè)

【語音識(shí)別】基于支持向量機(jī)SVM實(shí)現(xiàn)腦電信號(hào)分期睡眠監(jiān)測matlab 源碼

2021-08-21 00:16 作者:Matlab工程師  | 我要投稿

?一、簡介

支持向量機(jī)(Support Vector Machine)是Cortes和Vapnik于1995年首先提出的,它在解決小樣本、非線性及高維模式識(shí)別中表現(xiàn)出許多特有的優(yōu)勢,并能夠推廣應(yīng)用到函數(shù)擬合等其他機(jī)器學(xué)習(xí)問題中。
1 數(shù)學(xué)部分
1.1 二維空間

在這里插入圖片描述


在這里插入圖片描述


在這里插入圖片描述


在這里插入圖片描述


在這里插入圖片描述


在這里插入圖片描述


在這里插入圖片描述


在這里插入圖片描述


在這里插入圖片描述


2 算法部分

在這里插入圖片描述


在這里插入圖片描述


在這里插入圖片描述


在這里插入圖片描述

二、源代碼

function [model,H] = lssvmMATLAB(model) % Only for intern LS-SVMlab use; % % MATLAB implementation of the LS-SVM algorithm. This is slower % than the C-mex implementation, but it is more reliable and flexible; % % % This implementation is quite straightforward, based on MATLAB's % backslash matrix division (or PCG if available) and total kernel % matrix construction. It has some extensions towards advanced % techniques, especially applicable on small datasets (weighed % LS-SVM, gamma-per-datapoint) % Copyright (c) 2002, ?KULeuven-ESAT-SCD, License & help @ http://www.esat.kuleuven.ac.be/sista/lssvmlab %fprintf('~'); % % is it weighted LS-SVM ? % weighted = (length(model.gam)>model.y_dim); if and(weighted,length(model.gam)~=model.nb_data), ?warning('not enough gamma''s for Weighted LS-SVMs, simple LS-SVM applied'); ?weighted=0; end % computation omega and H omega = kernel_matrix(model.xtrain(model.selector, 1:model.x_dim), ... ? ?model.kernel_type, model.kernel_pars); % initiate alpha and b model.b = zeros(1,model.y_dim); model.alpha = zeros(model.nb_data,model.y_dim); for i=1:model.y_dim, ? ?H = omega; ? ?model.selector=~isnan(model.ytrain(:,i)); ? ?nb_data=sum(model.selector); ? ?if size(model.gam,2)==model.nb_data, ? ? ?try invgam = model.gam(i,:).^-1; catch, invgam = model.gam(1,:).^-1;end ? ? ?for t=1:model.nb_data, H(t,t) = H(t,t)+invgam(t); end ? ?else ? ? ?try invgam = model.gam(i,1).^-1; catch, invgam = model.gam(1,1).^-1;end ? ? ?for t=1:model.nb_data, H(t,t) = H(t,t)+invgam; end ? ?end ? ? ? ?v = H(model.selector,model.selector)\model.ytrain(model.selector,i); ? ?%eval('v ?= pcg(H,model.ytrain(model.selector,i), 100*eps,model.nb_data);','v = H\model.ytrain(model.selector, i);'); ? ?nu = H(model.selector,model.selector)\ones(nb_data,1); ? ?%eval('nu = pcg(H,ones(model.nb_data,i), 100*eps,model.nb_data);','nu = H\ones(model.nb_data,i);'); ? ?s = ones(1,nb_data)*nu(:,1); ? ?model.b(i) = (nu(:,1)'*model.ytrain(model.selector,i))./s; ? ?model.alpha(model.selector,i) = v(:,1)-(nu(:,1)*model.b(i)); end % Copyright (c) 2010, ?KULeuven-ESAT-SCD, License & help @ http://www.esat.kuleuven.be/sista/lssvmlab disp(' ?This demo illustrates facilities of LS-SVMlab'); disp(' ?with respect to unsupervised learning.'); disp(' a demo dataset is generated...'); clear yin yang samplesyin samplesyang mema % initiate variables and construct the data nb =200; sig = .20; % construct data leng = 1; for t=1:nb, ?yin(t,:) = [2.*sin(t/nb*pi*leng) 2.*cos(.61*t/nb*pi*leng) (t/nb*sig)]; ?yang(t,:) = [-2.*sin(t/nb*pi*leng) .45-2.*cos(.61*t/nb*pi*leng) (t/nb*sig)]; ?samplesyin(t,:) ?= [yin(t,1)+yin(t,3).*randn ? yin(t,2)+yin(t,3).*randn]; ?samplesyang(t,:) = [yang(t,1)+yang(t,3).*randn ? yang(t,2)+yang(t,3).*randn]; end % plot the data figure; hold on; plot(samplesyin(:,1),samplesyin(:,2),'+','Color',[0.6 0.6 0.6]); plot(samplesyang(:,1),samplesyang(:,2),'+','Color',[0.6 0.6 0.6]); xlabel('X_1'); ylabel('X_2'); title('Structured dataset'); disp(' ?(press any key)'); pause % % kernel based Principal Component Analysis % disp(' '); disp(' ?extract the principal eigenvectors in feature space'); disp(' >> nb_pcs=4;'); nb_pcs = 4; disp(' >> sig2 = .8;'); sig2 = .8; disp(' >> [lam,U] = kpca([samplesyin;samplesyang],''RBF_kernel'',sig2,[],''eigs'',nb_pcs); '); [lam,U] = kpca([samplesyin;samplesyang],'RBF_kernel',sig2,[],'eigs',nb_pcs); disp(' ?(press any key)'); pause % % make a grid over the inputspace % disp(' '); disp(' make a grid over the inputspace:'); disp('>> Xax = -3:0.1:3; Yax = -2.0:0.1:2.5;'); Xax = -3:0.1:3; Yax = -2.0:0.1:2.5; disp('>> [A,B] = meshgrid(Xax,Yax);'); [A,B] = meshgrid(Xax,Yax); disp('>> grid = [reshape(A,prod(size(A)),1) reshape(B,1,prod(size(B)))'']; ');

三、運(yùn)行結(jié)果

在這里插入圖片描述


在這里插入圖片描述


在這里插入圖片描述


【語音識(shí)別】基于支持向量機(jī)SVM實(shí)現(xiàn)腦電信號(hào)分期睡眠監(jiān)測matlab 源碼的評(píng)論 (共 條)

分享到微博請(qǐng)遵守國家法律
青岛市| 绥阳县| 沭阳县| 安康市| 上蔡县| 蓬溪县| 保定市| 于田县| 杭锦后旗| 鹿泉市| 永年县| 噶尔县| 耿马| 通榆县| 随州市| 原平市| 新丰县| 随州市| 海城市| 车险| 顺平县| 谢通门县| 云南省| 巍山| 松原市| 皮山县| 连州市| 荃湾区| 疏附县| 聊城市| 澳门| 江油市| 巴中市| 松江区| 洪湖市| 宝山区| 扶绥县| 萝北县| 郁南县| 沽源县| 桂林市|