再談數(shù)學歸納法證明:每個大于等于9的奇數(shù)都是3+兩個奇素數(shù)之和
運用數(shù)學歸納法證明:每個大于等于9的奇數(shù)都是3+兩個奇素數(shù)之和???????
????????????????????????????????崔坤
中國青島即墨,266200,E-mail:cwkzq@126.com
摘要: 數(shù)學家劉建亞在《哥德巴赫猜想與潘承洞》中說:“我們可以把這個問題反過來思考, 已知奇數(shù)N可以表成三個素數(shù)之和, 假如又能證明這三個素數(shù)中有一個非常小,譬如說第一個素數(shù)可以總?cè)?, 那么我們也就證明了偶數(shù)的哥德巴赫猜想。”, 直到2013年才有秘魯數(shù)學家哈羅德賀歐夫格特徹底證明了三素數(shù)定理。
關(guān)鍵詞:三素數(shù)定理,奇素數(shù),加法交換律結(jié)合律
中圖分類號:O156 ????文獻標識碼: A
Mathematical induction proves that every odd number greater than or equal to 9 is the sum of 3 + two odd prime numbers
abstract:Mathematician Liu Jianya said in "Goldbach Conjecture and Pan Chengdong": "We can think about this problem in reverse. Knowing that the odd number N can be expressed as the sum of three prime numbers, if it can be proved that one of the three prime numbers is very Small, for example, the first prime number can always be 3, then we have proved Goldbach’s conjecture for even numbers.” It was not until 2013 that Peruvian mathematician Harold Hoofgert completely proved the three prime number theorem.
keywords:Triple Prime Theorem, Odd Prime Numbers, Commutative Law of Addition, Associative Law
?
證明:
根據(jù)2013年秘魯數(shù)學家哈羅德·賀歐夫格特已經(jīng)徹底地證明了的三素數(shù)定理:
?每個大于等于9的奇數(shù)都是三個奇素數(shù)之和,每個奇素數(shù)都可以重復使用。
?它用下列公式表示:Q是每個≥9的奇數(shù),奇素數(shù):q1≥3,q2≥3,q3≥3,
則Q=q1+q2+q3 根據(jù)加法交換律結(jié)合律,不妨設(shè):q1≥q2≥q3≥3,
?則Q-3=q1+q2+q3-3 顯見:有且僅有q3=3時,Q-3=q1+q2,否則,奇數(shù)9,11,13都是三素數(shù)定理的反例。
?即每個大于等于6的偶數(shù)都是兩個奇素數(shù)之和
推論Q=3+q1+q2,即每個大于等于9的奇數(shù)都是3+兩個奇素數(shù)之和。
我們運用數(shù)學歸納法做如下證明:
給出首項為9,公差為2的等差數(shù)列:Qn=7+2n:{9,11,13,15,17,.....}
Q1= 9
Q2= 11
Q3= 13
Q4= 15
.......
Qn=7+2n=3+q1+q2,(其中奇素數(shù)q1≥q2≥3,奇數(shù)Qn≥9,n為正整數(shù))
數(shù)學歸納法:
第一步:當n=1時?,Q1=9 時 ,Q1=9=3+q1+q2=3+3+3成立
第二步:假設(shè) :n=k時,Qk=3+qk1+qk2,奇素數(shù):qk1≥3,qk2≥3,成立。
當n=k+1時,Q(k+1)=Qk+2=3+qk1+qk2+2=5+qk1+qk2
此時有且僅有2種情況:
A情況:qk1+2不為素數(shù)或者qk2+2不為素數(shù)時,Qk+2=Q(k+1)=5+qk1+qk2
即每個大于等于11的奇數(shù)都是5+兩個奇素數(shù)之和,從而每個大于等于6的偶數(shù)都是兩個奇素數(shù)之和。
而這個結(jié)論與“每個大于等于9的奇數(shù)都是3+兩個奇素數(shù)之和”是等價的
即:Qk+2=3+qk1+qk2+2=5+qk1+qk2=3+qk3+qk4,奇素數(shù):qk3≥3,qk4≥3
B情況:
(1)若qk1+2為qk1的孿生素數(shù)P,
則:Qk+2=5+qk1+qk2=3+P+qk2,即每個大于等于11的奇數(shù)都是3+兩個奇素數(shù)之和
(2) 若qk2+2為qk2的孿生素數(shù)P”,
則:Qk+2=5+qk1+qk2=3+P”+qk1,即每個大于等于11的奇數(shù)都是3+兩個奇素數(shù)之和
綜上所述,對于任意正整數(shù)n命題均成立,即:每個大于等于9的奇數(shù)都是3+兩個奇素數(shù)之和
結(jié)論:每個大于等于9的奇數(shù)都是3+兩個奇素數(shù)之和,Q=3+q1+q2,(奇素數(shù)q1≥q2≥3,奇數(shù)Q≥9)
參考文獻:
[1]?Major Arcs for Goldbach's Theorem. Arxiv [Reference date 2013-12-18]
[2]?Minor arcs for Goldbach's problem.Arxiv [Reference date 2013-12-18]