【圖像加密】基于正交拉丁方置亂+混沌圖像加密解密含Matlab源碼
1 簡介
提出了一種基于正交拉丁方置亂+混沌的圖像置亂加密算法.借助MATLAB2014軟件平臺(tái)編程實(shí)現(xiàn),并研究了加密算法的抗破損能力.實(shí)驗(yàn)結(jié)果表明:該算法的加密效果良好,圖像的抗破損能力強(qiáng).
2 部分代碼
% RegisterFourierMellin
% This code is the result of my messing around with Matlab investigating
% various image registration techniques. ?I came across the excellent
% (although perhaps a little messy and buggy) fm_gui_v2 from Adam Wilmer
% here:
% http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=3000&objectType=file
% Because my needs are essentially the algorithm itself in a neat and tidy
% format to enable an easier conversion to C++, I've extracted what I think
% is the essence of the Fourier Mellin method into this file. ?Obviously
% I haven't included a GUI. ?In order to test it, you need to set the first
% two statements to load in 2 image files of the same size, in 8 bit grayscale.
% I took lena and then used Gimp to rotate/shift/crop at various angles.
% It isn't sub-pixel accurate, although I'm aware of methods to achieve
% this by extracting the peaks around the peak of the phase correlation and
% finding the maxima (least squares perhaps). ?
% The methods towards the end of the program are cribbed directly from
% Adam's version. ?I'm new to Matlab (been playing with it for less than
% a fortnight), so I wasn't able to get my head around his log polar transform
% or the final "blending" of the two images together.
% I'd like to thank Adam for publishing his version. ?Without it I'd never
% have known I had to take the log polar transform of the magnitude of the
% FFT, rather than the log polar transform of the original image!
function combImage=RegnisterFourierMellin(I1,I2)
? ?% The procedure is as follows (note this does not compute scale)
? ?% (1) ? Read in I1 - the image to register against
? ?% (2) ? Read in I2 - the image to register
? ?% (3) ? Take the FFT of I1, shifting it to center on zero frequency
? ?% (4) ? Take the FFT of I2, shifting it to center on zero frequency
? ?% (5) ? Convolve the magnitude of (3) with a high pass filter
? ?% (6) ? Convolve the magnitude of (4) with a high pass filter
? ?% (7) ? Transform (5) into log polar space
? ?% (8) ? Transform (6) into log polar space
? ?% (9) ? Take the FFT of (7)
? ?% (10) ?Take the FFT of (8)
? ?% (11) ?Compute phase correlation of (9) and (10)
? ?% (12) ?Find the location (x,y) in (11) of the peak of the phase correlation
? ?% (13) ?Compute angle (360 / Image Y Size) * y from (12)
? ?% (14) ?Rotate the image from (2) by - angle from (13)
? ?% (15) ?Rotate the image from (2) by - angle + 180 from (13)
? ?% (16) ?Take the FFT of (14)
? ?% (17) ?Take the FFT of (15)
? ?% (18) ?Compute phase correlation of (3) and (16)
? ?% (19) ?Compute phase correlation of (3) and (17)
? ?% (20) ?Find the location (x,y) in (18) of the peak of the phase correlation
? ?% (21) ?Find the location (x,y) in (19) of the peak of the phase correlation
? ?% (22) ?If phase peak in (20) > phase peak in (21), (y,x) from (20) is the translation
? ?% (23a) Else (y,x) from (21) is the translation and also:
? ?% (23b) If the angle from (13) < 180, add 180 to it, else subtract 180 from it.
? ?% (24) ?Tada!
? ?% Requires (ouch):
? ?% 6 x FFT
? ?% 4 x FFT Shift
? ?% 3 x IFFT
? ?% 2 x Log Polar
? ?% 3 x Phase Correlations
? ?% 2 x High Pass Filter
? ?% 2 x Image Rotation
? ?% ---------------------------------------------------------------------
? ?% Load first image (I1)
? % I1 = imread('lena.bmp');
? ?% Load second image (I2)
? % I2 = imread('lena_cropped_shifted.bmp');
? ?% Convert both to FFT, centering on zero frequency component
? ?SizeX = size(I1, 1);
? ?SizeY = size(I1, 2);
? ?FA = fftshift(fft2(I1));
? ?FB = fftshift(fft2(I2));
? ?% Output (FA, FB)
? ?% ---------------------------------------------------------------------
? ?% Convolve the magnitude of the FFT with a high pass filter)
? ?IA = hipass_filter(size(I1, 1),size(I1,2)).*abs(FA); ?
? ?IB = hipass_filter(size(I2, 1),size(I2,2)).*abs(FB); ?
? ?% Transform the high passed FFT phase to Log Polar space
? ?L1 = transformImage(IA, SizeX, SizeY, SizeX, SizeY, 'nearest', size(IA) / 2, 'valid');
? ?L2 = transformImage(IB, SizeX, SizeY, SizeX, SizeY, 'nearest', size(IB) / 2, 'valid');
? ?% Convert log polar magnitude spectrum to FFT
? ?THETA_F1 = fft2(L1);
? ?THETA_F2 = fft2(L2);
? ?% Compute cross power spectrum of F1 and F2
? ?a1 = angle(THETA_F1);
? ?a2 = angle(THETA_F2);
? ?THETA_CROSS = exp(i * (a1 - a2));
? ?THETA_PHASE = real(ifft2(THETA_CROSS));
? ?%
? ?combImage = plant;
? ?for p=1:total_height
? ? ? ?for q=1:total_width
? ? ? ? ? ?if (combImage(p,q)==0)
? ? ? ? ? ? ? ?combImage(p,q) = bleed(p,q);
? ? ? ? ? ?end
? ? ? ?end
? ?end
? ?% Show final image
? % imshow(combImage, [0 255]);
% ---------------------------------------------------------------------
% Performs Log Polar Transform
function [r,g,b] = transformImage(A, Ar, Ac, Nrho, Ntheta, Method, Center, Shape)
% Inputs: ? A ? ? ? the input image
% ? ? ? ? ? Nrho ? ?the desired number of rows of transformed image
% ? ? ? ? ? Ntheta ?the desired number of columns of transformed image
% ? ? ? ? ? Method ?interpolation method (nearest,bilinear,bicubic)
% ? ? ? ? ? Center ?origin of input image
% ? ? ? ? ? Shape ? output size (full,valid)
% ? ? ? ? ? Class ? storage class of A
global rho;
theta = linspace(0,2*pi,Ntheta+1); theta(end) = [];
switch Shape
case 'full'
? ?corners = [1 1;Ar 1;Ar Ac;1 Ac];
? ?d = max(sqrt(sum((repmat(Center(:)',4,1)-corners).^2,2)));
case 'valid'
? ?d = min([Ac-Center(1) Center(1)-1 Ar-Center(2) Center(2)-1]);
end
minScale = 1;
rho = logspace(log10(minScale),log10(d),Nrho)'; ?% default 'base 10' logspace - play with d to change the scale of the log axis
% convert polar coordinates to cartesian coordinates and center
xx = rho*cos(theta) + Center(1);
yy = rho*sin(theta) + Center(2);
if nargout==3
?if strcmp(Method,'nearest'), % Nearest neighbor interpolation
? ?r=interp2(A(:,:,1),xx,yy,'nearest');
? ?g=interp2(A(:,:,2),xx,yy,'nearest');
? ?b=interp2(A(:,:,3),xx,yy,'nearest');
?elseif strcmp(Method,'bilinear'), % Linear interpolation
? ?r=interp2(A(:,:,1),xx,yy,'linear');
? ?g=interp2(A(:,:,2),xx,yy,'linear');
? ?b=interp2(A(:,:,3),xx,yy,'linear');
?elseif strcmp(Method,'bicubic'), % Cubic interpolation
? ?r=interp2(A(:,:,1),xx,yy,'cubic');
? ?g=interp2(A(:,:,2),xx,yy,'cubic');
? ?b=interp2(A(:,:,3),xx,yy,'cubic');
?else
? ?error(['Unknown interpolation method: ',method]);
?end
?% any pixels outside , pad with black
?mask= (xx>Ac) | (xx<1) | (yy>Ar) | (yy<1);
?r(mask)=0;
?g(mask)=0;
?b(mask)=0;
else
?if strcmp(Method,'nearest'), % Nearest neighbor interpolation
? ?r=interp2(A,xx,yy,'nearest');
?elseif strcmp(Method,'bilinear'), % Linear interpolation
? ?r=interp2(A,xx,yy,'linear');
?elseif strcmp(Method,'bicubic'), % Cubic interpolation
? ?r=interp2(A,xx,yy,'cubic');
?else
? ?error(['Unknown interpolation method: ',method]);
?end
?% any pixels outside warp, pad with black
?mask= (xx>Ac) | (xx<1) | (yy>Ar) | (yy<1);
?r(mask)=0;
end ?
% ---------------------------------------------------------------------
% Returns high-pass filter
function H = hipass_filter(ht,wd)
% hi-pass filter function
% ...designed for use with Fourier-Mellin stuff
res_ht = 1 / (ht-1);
res_wd = 1 / (wd-1);
eta = cos(pi*(-0.5:res_ht:0.5));
neta = cos(pi*(-0.5:res_wd:0.5));
X = eta'*neta;
H=(1.0-X).*(2.0-X);
3 仿真結(jié)果


4 參考文獻(xiàn)
【圖像加密】基于正交拉丁方置亂+混沌圖像加密解密含Matlab源碼
博主簡介:擅長智能優(yōu)化算法、神經(jīng)網(wǎng)絡(luò)預(yù)測、信號(hào)處理、元胞自動(dòng)機(jī)、圖像處理、路徑規(guī)劃、無人機(jī)等多種領(lǐng)域的Matlab仿真,相關(guān)matlab代碼問題可私信交流。
部分理論引用網(wǎng)絡(luò)文獻(xiàn),若有侵權(quán)聯(lián)系博主刪除。
