最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網(wǎng) 會員登陸 & 注冊

2023浙江大學強基數(shù)學逐題解析(5)

2023-06-21 00:57 作者:CHN_ZCY  | 我要投稿

封面:安達としまむら

作畫:kagami

https://www.pixiv.net/artworks/85618946


12. 下列說法正確的是

A.?自然數(shù)集合與有理數(shù)集合間無雙射

B.?有理數(shù)集合與實數(shù)集合間無雙射

C.?實數(shù)集合與整數(shù)集合間無雙射

D. 以上都不對

答案? BC

解析??

A. 我們將%5Cfrac%7Bp%7D%7Bq%7D%5Cleft(p%5Cin%5Cmathbb%7BN%7D%5E*%2Cq%5Cin%5Cmathbb%7BN%7D%5E*%5Cright)按如下順序排成數(shù)列%5Cleft%5C%7Br_n%5Cright%5C%7D

%5Cfrac%7B1%7D%7B1%7D%2C%5Cfrac%7B2%7D%7B1%7D%2C%5Cfrac%7B1%7D%7B2%7D%2C%5Cfrac%7B3%7D%7B1%7D%2C%5Cfrac%7B2%7D%7B2%7D%2C%5Cfrac%7B1%7D%7B3%7D%2C%5Cfrac%7B4%7D%7B1%7D%2C%5Cfrac%7B3%7D%7B2%7D%2C%5Cfrac%7B2%7D%7B3%7D%2C%5Cfrac%7B1%7D%7B4%7D%2C%5Ccdots

然后將其中滿足%5Cleft(p%2Cq%5Cright)%3D1的項對應的n從小到大排成%5Cleft%5C%7Ba_n%5Cright%5C%7D.

構造f_%2B%3A%5Cmathbb%7BN%7D%5E*%20%5Crightarrow%20%5Cmathbb%7BQ%7D%5E*,滿足

f_%2B%5Cleft(n%5Cright)%3Dr_%7Ba_n%7D%5Cleft(n%5Cin%5Cmathbb%7BN%7D%5E*%5Cright)

f_%2B是一個雙射.

利用交替排列正負有理數(shù)的方法,構造f%3A%5Cmathbb%7BN%7D%20%5Crightarrow%20%5Cmathbb%7BQ%7D滿足:

f%5Cleft(0%5Cright)%3D0

f%5Cleft(2n-1%5Cright)%3D-f_%2B%5Cleft(n%5Cright)%5Cleft(n%5Cin%5Cmathbb%7BN%7D%5E*%5Cright)

f%5Cleft(2n%5Cright)%3Df_%2B%5Cleft(n%5Cright)%5Cleft(n%5Cin%5Cmathbb%7BN%7D%5E*%5Cright)

f是一個雙射.

所以,自然數(shù)集合與有理數(shù)集合間存在雙射.

故A說法不正確.

B.?由A知,%5Cmathbb%7BQ%7D%5Cmathbb%7BN%7D等勢.

我們證明以下引理:

引理1??對任意x%5Cin%5Cmathbb%7BR%7D和區(qū)間%5Cleft%5Ba%2Cb%5Cright%5D%5Cleft(a%3Cb%5Cright),存在c%2Cd%5Cleft(c%3Cd%5Cright)滿足%5Cleft%5Bc%2Cd%5Cright%5D%20%5Csubseteq%20%5Cleft%5Ba%2Cb%5Cright%5Dx%20%5Cnotin%20%5Cleft%5Bc%2Cd%5Cright%5D.

證明? 若x%5Cnotin%5Cleft%5Ba%2Cb%5Cright%5D,則只需

a%5Cleq%20c%3Cd%5Cleq%20b

顯然存在.

x%3Da,則只需

a%3C%20c%3Cd%5Cleq%20b

顯然存在.

x%5Cin%20%5Cleft(a%2Cb%5Cright),則只需

a%5Cleq%20c%3Cd%3Cx%3Cb%20%E6%88%96a%3Cx%3Cc%3Cd%5Cleq%20b

顯然存在.

x%3Db,則只需

a%5Cleq%20c%3Cd%3C%20b

顯然存在.

綜上,對任意x%5Cin%5Cmathbb%7BR%7D和區(qū)間%5Cleft%5Ba%2Cb%5Cright%5D%5Cleft(a%3Cb%5Cright),存在c%2Cd%5Cleft(c%3Cd%5Cright)滿足%5Cleft%5Bc%2Cd%5Cright%5D%20%5Csubseteq%20%5Cleft%5Ba%2Cb%5Cright%5Dx%20%5Cnotin%20%5Cleft%5Bc%2Cd%5Cright%5D. 引理1得證.

引理2? 對任意L%3E0,在引理1的條件下,都存在c%2Cd滿足

0%3Cd-c%3CL

證明? 對于引理1中取得的任意%5Cleft%5Bc%2Cd%5Cright%5D,若0%3Cd-c%3CL,結論成立;若d-c%5Cgeq%20L,則一定存在%5Cleft%5Bc%2Cd%5Cright%5D的某個真子集%5Cleft%5Bc'%2Cd'%5Cright%5D滿足0%3Cd'-c'%3CL,結論成立. 引理2得證.

假設%5Cmathbb%7BR%7D%5Cmathbb%7BN%7D等勢,即%5Cmathbb%7BR%7D%3D%5Cbigcup_%7Bn%5Cin%5Cmathbb%7BN%7D%7D%5E%7B%7D%5Cleft%5C%7Bx_n%5Cright%5C%7D%20.

存在%5Cleft%5Ba_0%2Cb_0%5Cright%5D%20%5Csubseteq%20%5Cmathbb%7BR%7D滿足

x_0%20%5Cnotin%20%5Cleft%5Ba_0%2Cb_0%5Cright%5D

0%3Cb_0-a_0%3C%5Cfrac%7B1%7D%7B2%5E0%7D

對任意n%5Cin%20%5Cmathbb%7BN%7D%5E*,存在%5Cleft%5Ba_n%2Cb_n%5Cright%5D%20%5Csubseteq%20%5Cleft%5Ba_%7Bn-1%7D%2Cb_%7Bn-1%7D%5Cright%5D滿足

x_n%20%5Cnotin%20%5Cleft%5Ba_n%2Cb_n%5Cright%5D

0%3Cb_n-a_n%3C%5Cfrac%7B1%7D%7B2%5En%7D

由此,%5Cleft%5C%7Ba_n%5Cright%5C%7D_%7Bn%5Cin%5Cmathbb%7BN%7D%7D%5Cleft%5C%7Bb_n%5Cright%5C%7D_%7Bn%5Cin%5Cmathbb%7BN%7D%7D均為%5Cmathrm%7BCauchy%7D數(shù)列,因此%5Clim_%7Bn%5Cto%2B%5Cinfty%7D%20a_n%5Clim_%7Bn%5Cto%2B%5Cinfty%7D%20b_n均存在.

%5Clim_%7Bn%5Cto%2B%5Cinfty%7D%20%5Cleft(b_n-a_n%5Cright)%3D0,所以

%5Clim_%7Bn%5Cto%2B%5Cinfty%7D%20a_n%3D%5Clim_%7Bn%5Cto%2B%5Cinfty%7D%20b_n

%5Clim_%7Bn%5Cto%2B%5Cinfty%7D%20a_n%3D%5Clim_%7Bn%5Cto%2B%5Cinfty%7D%20b_n%3Ds%20%5Cin%20%5Cmathbb%7BR%7D

則對于任意n%5Cin%20%5Cmathbb%7BN%7Da_n%3Cs%3Cb_n.

由于對于任意n%5Cin%20%5Cmathbb%7BN%7D,x_n%20%5Cnotin%20%5Cleft%5Ba_n%2Cb_n%5Cright%5D,

所以對于任意n%5Cin%20%5Cmathbb%7BN%7D,x_n%20%5Cneq%20s.

這說明s%20%5Cnotin%20%5Cmathbb%7BR%7D,矛盾.

所以%5Cmathbb%7BR%7D%5Cmathbb%7BN%7D等勢.

從而%5Cmathbb%7BQ%7D%5Cmathbb%7BR%7D不等勢. 所以有理數(shù)集合與實數(shù)集合間無雙射.

故B說法正確.

C. 構造g%3A%5Cmathbb%7BN%7D%20%5Crightarrow%20%5Cmathbb%7BZ%7D,滿足

g%5Cleft(n%5Cright)%3D%5Cbegin%7Bcases%7D%0A%5Cfrac%7Bn%7D%7B2%7D%2Cn%3D2k%5Cleft(k%5Cin%5Cmathbb%7BN%7D%5Cright)%5C%5C%0A-%5Cfrac%7Bn%2B1%7D%7B2%7D%2Cn%3D2k%2B1%5Cleft(k%5Cin%5Cmathbb%7BN%7D%5Cright)%0A%5Cend%7Bcases%7D

g是一個雙射,所以%5Cmathbb%7BN%7D%5Cmathbb%7BZ%7D等勢.

所以%5Cmathbb%7BR%7D%5Cmathbb%7BZ%7D不等勢. 所以實數(shù)集合與整數(shù)集合間無雙射.

故C說法正確.

D. 因為B、C說法是正確的,所以D說法不正確.

故選:BC.

13. 已知a%20%5Cin%20%5Cmathbb%7BR%7D,%5Ctheta%20%5Cin%20%5Cleft%5B0%2C2%5Cpi%5Cright),復數(shù)

z_1%3D%5Ccos%5Ctheta%2B%5Cmathrm%7Bi%7D%5Csin%5Ctheta

z_2%3D%5Csin%5Ctheta%2B%5Cmathrm%7Bi%7D%5Ccos%5Ctheta

z_3%3Da%5Cleft(1-%5Cmathrm%7Bi%7D%5Cright)

求滿足z_1,z_2z_3成等比數(shù)列的%5Cleft(a%2C%5Ctheta%5Cright)的個數(shù).

答案? 6

解析??

由于z_2%5Cneq0,所以z_1%2Cz_2%2Cz_3成等比數(shù)列等價于

z_2%5E2%3Dz_1z_3

由于

z_2%3D%5Ccos%5Cleft(%5Cfrac%7B%5Cpi%7D%7B2%7D-%5Ctheta%5Cright)%2B%5Cmathrm%7Bi%7D%5Csin%5Cleft(%5Cfrac%7B%5Cpi%7D%7B2%7D-%5Ctheta%5Cright)

z_3%3D%5Csqrt%7B2%7Da%5Cleft(%5Ccos%5Cfrac%7B7%5Cpi%7D%7B4%7D%2B%5Cmathrm%7Bi%7D%5Csin%5Cfrac%7B7%5Cpi%7D%7B4%7D%5Cright)

所以z_2%5E2%3Dz_1z_3等價于

%5Cbegin%7Bcases%7D%0A1%5E2%3D1%5Ccdot%5Csqrt%7B2%7Da%5C%5C%0A%5Cpi-2%5Ctheta%3D%5Ctheta%2B%5Cfrac%7B7%5Cpi%7D%7B4%7D%2B2k%5Cpi%5Cleft(k%5Cin%5Cmathbb%7BZ%7D%5Cright)%0A%5Cend%7Bcases%7D%0A%E6%88%96%0A%5Cbegin%7Bcases%7D%0A-1%5E2%3D1%5Ccdot%5Csqrt%7B2%7Da%5C%5C%0A2%5Cpi-2%5Ctheta%3D%5Ctheta%2B%5Cfrac%7B7%5Cpi%7D%7B4%7D%2B2k%5Cpi%5Cleft(k%5Cin%5Cmathbb%7BZ%7D%5Cright)%0A%5Cend%7Bcases%7D%0A

%5Cbegin%7Bcases%7D%0Aa%3D%5Cfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D%5C%5C%0A%5Ctheta%3D-%5Cfrac%7B%5Cpi%7D%7B4%7D%2B%5Cfrac%7B2k%5Cpi%7D%7B3%7D%5Cleft(k%5Cin%5Cmathbb%7BZ%7D%5Cright)%0A%5Cend%7Bcases%7D%0A%E6%88%96%0A%5Cbegin%7Bcases%7D%0Aa%3D-%5Cfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D%5C%5C%0A%5Ctheta%3D%5Cfrac%7B%5Cpi%7D%7B12%7D%2B%5Cfrac%7B2k%5Cpi%7D%7B3%7D%5Cleft(k%5Cin%5Cmathbb%7BZ%7D%5Cright)%0A%5Cend%7Bcases%7D%0A

由于%5Ctheta%20%5Cin%20%5Cleft%5B0%2C2%5Cpi%5Cright),上式即

%5Cbegin%7Bcases%7D%0Aa%3D%5Cfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D%5C%5C%0A%5Ctheta%3D%5Cfrac%7B5%5Cpi%7D%7B12%7D%E6%88%96%5Cfrac%7B13%5Cpi%7D%7B12%7D%E6%88%96%5Cfrac%7B21%5Cpi%7D%7B12%7D%0A%5Cend%7Bcases%7D%0A%E6%88%96%0A%5Cbegin%7Bcases%7D%0Aa%3D-%5Cfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D%5C%5C%0A%5Ctheta%3D%5Cfrac%7B%5Cpi%7D%7B12%7D%E6%88%96%5Cfrac%7B3%5Cpi%7D%7B4%7D%E6%88%96%5Cfrac%7B17%5Cpi%7D%7B12%7D%0A%5Cend%7Bcases%7D%0A

所以滿足z_1%2Cz_2%2Cz_3成等比數(shù)列的%5Cleft(a%2C%5Ctheta%5Cright)的個數(shù)為6.

2023浙江大學強基數(shù)學逐題解析(5)的評論 (共 條)

分享到微博請遵守國家法律
克什克腾旗| 侯马市| 公安县| 岳普湖县| 泰州市| 小金县| 邯郸县| 黔西| 五指山市| 麟游县| 荆州市| 齐齐哈尔市| 新昌县| 榕江县| 常州市| 衡阳县| 迭部县| 江西省| 明水县| 江城| 普格县| 集安市| 三台县| 安多县| 临安市| 怀远县| 白河县| 内丘县| 北京市| 安宁市| 宝应县| 泌阳县| 阿克陶县| 中宁县| 丹棱县| 广水市| 汉中市| 遂川县| 资中县| 通化市| 高要市|