最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網(wǎng) 會員登陸 & 注冊

復旦大學謝啟鴻高等代數(shù)習題課ep.29-30練習題九解析幾何問題的再探究

2021-12-13 20:58 作者:CharlesMa0606  | 我要投稿

本文內(nèi)容主要有關于復旦大學謝啟鴻高等代數(shù)習題課ep.29-30練習題九的解析幾何問題

習題課視頻鏈接:復旦大學謝啟鴻高等代數(shù)習題課_嗶哩嗶哩_bilibili

題目來自于復旦大學謝啟鴻教授在本站高等代數(shù)習題課的課后思考題,本文僅供學習交流

首先給出原題和原來的證明

原題、原來的證明

感謝網(wǎng)友@雨不大不打傘 提出的問題:為什么系數(shù)矩陣的秩就是5了呢?于是我重新審視這道題,發(fā)現(xiàn)并沒有我原來想象得那么簡單,這個系數(shù)矩陣的行之間、列之間的關系比較復雜,并不是一句話就能帶過的,因此我對這個問題進行了重新探索,下面給出更加嚴格的證明.

證明? ??設二次曲線為ax%5E2%2Bbxy%2Bcy%5E2%2Bdx%2Bey%2Bf%3D0,對坐標系進行適當旋轉,使得x_i各不相同從而可以如下線性方程組:

%5Cleft(%5Cast%5Cright)%5Cleft%5C%7B%5Cbegin%7Bmatrix%7Dax_1%5E2%2Bbx_1y_1%2Bcy_1%5E2%2Bdx_1%2Bey_1%2Bf%3D0%5C%5Cax_2%5E2%2Bbx_2y_2%2Bcy_2%5E2%2Bdx_2%2Bey_2%2Bf%3D0%5C%5Cax_3%5E2%2Bbx_3y_3%2Bcy_3%5E2%2Bdx_3%2Bey_3%2Bf%3D0%5C%5Cax_4%5E2%2Bbx_4y_4%2Bcy_4%5E2%2Bdx_4%2Bey_4%2Bf%3D0%5C%5Cax_5%5E2%2Bbx_5y_5%2Bcy_5%5E2%2Bdx_5%2Bey_5%2Bf%3D0%5C%5C%5Cend%7Bmatrix%7D%5Cright.

注意到存在二次曲線ax%5E2%2Bbxy%2Bcy%5E2%2Bdx%2Bey%2Bf%3D0經(jīng)過這五個點當且僅當上述方程組%5Cleft(%5Cast%5Cright)有非零解,而由系數(shù)矩陣不可能列滿秩可得解空間維數(shù)大于等于1,也即一定有非零解,這就說明了一定存在二次曲線通過這5個點.

要證這條曲線唯一,只需要證明線性方程組%5Cleft(%5Cast%5Cright)的系數(shù)矩陣的秩為5.

由任意4個點不共線可得%5Cleft(x_1%2Cx_2%2C%5Ccdots%2Cx_5%5Cright)%5E%5Cprime%2C%5Cleft(y_1%2Cy_2%2C%5Ccdots%2Cy_5%5Cright)%5E%5Cprime%2C%5Cleft(1%2C1%2C%5Ccdots%2C1%5Cright)%5E%5Cprime線性無關.?

下面我們證明系數(shù)矩陣A的秩不能小于5,設系數(shù)矩陣的秩小于5,則:

討論%5Cleft(x_1%5E2%2Cx_2%5E2%2C%5Ccdots%2Cx_5%5E2%5Cright)%5E%5Cprime%2C%5Cleft(x_1%2Cx_2%2C%5Ccdots%2Cx_5%5Cright)%5E%5Cprime%2C%5Cleft(y_1%2Cy_2%2C%5Ccdots%2Cy_5%5Cright)%5E%5Cprime%2C%5Cleft(1%2C1%2C%5Ccdots%2C1%5Cright)%5E%5Cprime四列的線性無關性,若它們線性相關,則由%5Cleft(x_1%2Cx_2%2C%5Ccdots%2Cx_5%5Cright)%5E%5Cprime%2C%5Cleft(y_1%2Cy_2%2C%5Ccdots%2Cy_5%5Cright)%5E%5Cprime%2C%5Cleft(1%2C1%2C%5Ccdots%2C1%5Cright)%5E%5Cprime線性無關可知y_i是關于x_i的二次函數(shù),考慮1%2Cx_i%2Cx_i%5E2%2Cx_iy_i%2Cy_i%5E2五列構成的子式,則這是一個范德蒙矩陣且各行代表元素不同,從而行列式的值非零,由矩陣秩的子式判別法可知系數(shù)矩陣的秩為5,得到矛盾.于是%5Cleft(x_1%5E2%2Cx_2%5E2%2C%5Ccdots%2Cx_5%5E2%5Cright)%5E%5Cprime%2C%5Cleft(x_1%2Cx_2%2C%5Ccdots%2Cx_5%5Cright)%5E%5Cprime%2C%5Cleft(y_1%2Cy_2%2C%5Ccdots%2Cy_5%5Cright)%5E%5Cprime%2C%5Cleft(1%2C1%2C%5Ccdots%2C1%5Cright)%5E%5Cprime線性無關,注意到矩陣的秩小于等于4,從而它們是A的列向量的極大無關組,并且可設x_iy_i%3Dp_1x_i%5E2%2Bq_1x_i%2Br_1y_i%2Bt_1%2Cy_i%5E2%3Dp_2x_i%5E2%2Bq_2x_i%2Br_2y_i%2Bt_2.%20

1°存在某個x_i%3Dr_1,則有p_1r_1%5E2%2Bq_1x_i%5E2%2Bt_1%3D0%2Cy_i%5E2%3Dp_2r_1%5E2%2Bq_2r_1%2Br_2y_i%2Bt_2

2°對x_i%5Cneq%20r_1,變形得到:

y_i%3D%5Cfrac%7Bp_1x_i%5E2%2Bq_1x_i%2Bt_1%7D%7Bx_i-r_1%7D

代入得

%5Cleft(%5Cfrac%7Bp_1x_i%5E2%2Bq_1x_i%2Bt_1%7D%7Bx_i-r_1%7D%5Cright)%5E2%3Dp_2x_i%5E2%2Bq_2x_i%2Br_2%5Cfrac%7Bp_1x_i%5E2%2Bq_1x_i%2Bt_1%7D%7Bx_i-r_1%7D%2Bt_2

去分母,有:

%5Cleft(p_1x_i%5E2%2Bq_1x_i%2Bt_1%5Cright)%5E2%3D%5Cleft(p_2x_i%5E2%2Bq_2x_i%2Bt_2%5Cright)%5Cleft(x_i-r_1%5Cright)%2Br_2%5Cleft(p_1x_i%5E2%2Bq_1x_i%2Bt_1%5Cright)%5Cleft(x_i-r_1%5Cright)

這是一個關于x_i的四次方程,并且若存在某個x_i%3Dr_1,則它一定適合上述四次方程,并且是上述四次方程增根,若不存在x_i%3Dr_1,注意到四次方程最多只有四個根,從而仍然最多只存在4個不同的x_i.但是根據(jù)我們的假設,五個x_i各不相同,于是矛盾.

這意味著當系數(shù)矩陣A的秩小于5時,%5Cleft(x_1%5E2%2Cx_2%5E2%2C%5Ccdots%2Cx_5%5E2%5Cright)%5E%5Cprime%2C%5Cleft(x_1%2Cx_2%2C%5Ccdots%2Cx_5%5Cright)%5E%5Cprime%2C%5Cleft(y_1%2Cy_2%2C%5Ccdots%2Cy_5%5Cright)%5E%5Cprime%2C%5Cleft(1%2C1%2C%5Ccdots%2C1%5Cright)%5E%5Cprime既不可以線性相關,又不可以線性無關,這說明系數(shù)矩陣的秩只能等于5. 這樣就證明了這樣的圓錐曲線是唯一的.

%5BQ.E.D%5D

注??? 本題應當還有基于解析幾何相關理論的證明,這里不再贅述.

致謝? ??感謝復旦大學數(shù)學科學學院謝啟鴻教授對我重新寫出的證法給出的優(yōu)化建議

復旦大學謝啟鴻高等代數(shù)習題課ep.29-30練習題九解析幾何問題的再探究的評論 (共 條)

分享到微博請遵守國家法律
闻喜县| 沈丘县| 泽普县| 杭锦后旗| 左云县| 台江县| 六盘水市| 远安县| 白城市| 兴文县| 辰溪县| 台前县| 赣州市| 广宗县| 巴青县| 甘谷县| 康定县| 乌兰县| 新密市| 苍梧县| 通许县| 金寨县| 新田县| 土默特右旗| 宜宾县| 沂水县| 伊金霍洛旗| 班玛县| 内江市| 邹城市| 郸城县| 秦皇岛市| 满城县| 安溪县| 吉安市| 沈丘县| 长白| 鄢陵县| 称多县| 棋牌| 楚雄市|