最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網(wǎng) 會員登陸 & 注冊

強化學習2023版第一講 德梅萃·P. 博賽卡斯(Dimitri P. Bert

2023-02-12 08:32 作者:聽聽我的腦洞  | 我要投稿

?
06:47
?

On-Line Play algorithm.

Online tree search.

So, search all the moves and determine the final values. Determine the move based on the final values.

以果決行。

?
11:34
?

Off-Line Training in AlphaZero: Approximation Policy Iteration (PI)

a value neural net through training

a policy neural net through training

?
16:04
?

on-line player plays better than the off-line-trained player.


Central role of Newton's method?

mathematical connection?

?
23:27
?

跳了這部分。

?
40:00
?

Reference page.

?
40:25
?

Terminology.

RL uses Max/Value

DP uses Min/Cost

  • Reward of a stage = (Opposite of ) cost of a stage
  • State value = (Opposite of) State cost
  • Value (or state-value) function = opposite of Cost function

Controlled system terminology

  • Agent = Decision maker or controller
  • Action = Decision or control
  • Environment = Dynamic system

Methods terminology

  • Learning = Solving a DP-related problem using simulation
  • Self-learning (or self-play in the context of games) = Solving a DP problem using simulation-based policy iteration.
  • Planning v.s. Learning distinction = Solving a DP problem with model based v.s. model-free simulation

?
44:59
?

Notations.

two types: transition probability/discrete-time system equation.

?
50:53
?

Finite Horizon Deterministic Optimal Control Model

a system ends at stage x_N.


?
54:40
?

A Special Case: Finite Number of States and Controls.

主要就是說也是shortest path...

?
59:05
?

Principle of Optimality:

THE TAIL OF AN OPTIMAL SEQUENCE IS OPTIMAL FOR THE TAIL SUBPROBLEM.

If there exists a better solution for the tail subproblem, then we will take that part instead of the current one. Hence, the principle of optimality holds.

?
01:04:18
?

From One Tail Subproblem to the Next.


I think for this part, it is to tell us that we can use backward method to solve the problem...

?
01:06:16
?

DP Algorithm: Solves all tail subproblems efficiently by using the Principle of Optimality.


中間講了兩個例了跳了。



?
01:25:24
?

General Discrete Optimization.


?
01:29:47
?

Connect DP to Reinforcement Learning..

Use approximation J^\tilda s instead of J^\star s. (off-line training)

Generate all the approximations.

Then, going forward, to find u^\tilda_k (on-line play)

?
01:33:17
?

Extentions:

Stochastic finite horizon problems: x_{k+1} is random

Infinite horizon problems: instead of ending at stage N...

Stochastic partial state information problems:

do not know the state information perfectly

MINIMAX/game problems

?
01:40:48
?

課程要求~跳啦



強化學習2023版第一講 德梅萃·P. 博賽卡斯(Dimitri P. Bert的評論 (共 條)

分享到微博請遵守國家法律
塘沽区| 台中市| 忻州市| 土默特右旗| 泗水县| 五原县| 九龙坡区| 长汀县| 田东县| 五峰| 涿鹿县| 七台河市| 南康市| 崇阳县| 稷山县| 阿图什市| 涞水县| 正蓝旗| 姜堰市| 滁州市| 新田县| 海口市| 仁寿县| 木兰县| 蒲城县| 米林县| 顺平县| 澎湖县| 永登县| 吉隆县| 中山市| 四平市| 门源| 平阳县| 新绛县| 和静县| 甘洛县| 永修县| 玉田县| 贺州市| 镇康县|