無(wú)麩質(zhì)飲食:抗衰健康飲食新選擇?未必!弄明白了再吃

說(shuō)起全球的健康飲食方式,種類可不在少數(shù),我們耳熟能詳?shù)?strong>地中海飲食、DASH飲食、沖繩飲食等,都是名單上的“常駐嘉賓”。而近年來(lái)流行的無(wú)麩質(zhì)飲食,似乎又把一個(gè)新鮮的健康飲食方式擺到了我們面前。
無(wú)麩質(zhì)飲食是指僅攝入不含麩質(zhì)的食物,根據(jù)美國(guó)FDA的規(guī)定,只要食品中麩質(zhì)含量小于20mg/kg就能加上這樣的標(biāo)識(shí)[1]。
這種飲食方式最早可以追溯到20世紀(jì)40年代。二戰(zhàn)讓歐洲的民眾失去小麥來(lái)源,卻意外改善了乳糜瀉患者的健康狀況。之后,研究人員發(fā)現(xiàn)根源在于小麥中高含量的麩質(zhì),并提倡在乳糜瀉高發(fā)的白人群體中推廣無(wú)麩質(zhì)飲食[2]。

那么,麩質(zhì)究竟是何物,于人類而言,它是敵還是友,所有人都該避免麩質(zhì)嗎?希望看完全文,你能得到答案。

麩質(zhì):藏身谷物中的面粉魔法師
提到麩質(zhì),第一反應(yīng)以為是谷物表層的麩皮。其實(shí)不然,麩質(zhì)并非碳水,而是天然存在于谷物中的多種蛋白質(zhì),主要為麥膠蛋白和谷蛋白,又被統(tǒng)稱為醇溶谷蛋白[3]。
在不同來(lái)源作物中,麩質(zhì)的分子質(zhì)量相差數(shù)倍,但都具有較高比例的脯氨酸和谷氨酰胺,不易溶于水,與乙醇有更好的親和力[4]。
這種藏身在谷物中的神奇蛋白熱穩(wěn)定性強(qiáng),并有很好的粘合與延展作用[5],可以保持面團(tuán)的彈性和黏稠度,改善口感,增加面粉的“筋道”。原來(lái)身邊北方朋友常稱贊的“面好,有筋道”,實(shí)則是面粉中麩質(zhì)含量較高。


保護(hù)心血管,或觸發(fā)免疫反應(yīng)?
麩質(zhì)與人類愛(ài)恨糾葛
與人類生活息息相關(guān)的麩質(zhì),一直都是個(gè)熱議話題,關(guān)于它與人類健康的關(guān)系,多年來(lái),各方意見(jiàn)爭(zhēng)論不休,支持者與反對(duì)者都沒(méi)能說(shuō)服對(duì)方。
#No.1 寶藏!麩質(zhì)頂呱呱:
預(yù)防心血管、糖尿病全靠它
對(duì)于支持者而言,麩質(zhì)簡(jiǎn)直人間寶藏。超十萬(wàn)名健康男性與女性參與、25年長(zhǎng)期追蹤,這項(xiàng)研究終于在2017年公布了結(jié)果,研究人員發(fā)現(xiàn)在膳食中添加麩質(zhì)能降低15%的心臟發(fā)病率[6]。
健康人群刻意避免麩質(zhì)攝入,會(huì)影響有益全谷物的攝入,大大增加罹患心血管疾病的風(fēng)險(xiǎn)[7,8]。
此外,對(duì)于健康人群而言,攝入含麩質(zhì)的全谷物食物還能顯著預(yù)防2型糖尿病[9],并降低全因及各類原因的死亡率[10]。

不過(guò),關(guān)于麩質(zhì)功效背后的機(jī)制,目前還不太清楚,僅推測(cè)它可能有控制體重[11]、改善胰島素敏感性的作用,因?yàn)?strong>全谷物攝入帶來(lái)的益處無(wú)法被除麩質(zhì)外的其他特點(diǎn),如富含膳食纖維、鎂及B族維生素及低升糖指數(shù)等完全解釋[12]。
#No.2 毒藥!麩質(zhì)伸魔爪:
炎癥、免疫反應(yīng)全引發(fā),還能讓你精神分裂
再把話筒遞給麩質(zhì)的反對(duì)方,在他們口中,麩質(zhì)搖身一變,成了個(gè)徹徹底底的毒藥。
開(kāi)篇曾介紹,麩質(zhì)是一種脯氨酸和谷氨酰胺含量很高的蛋白混合物,正因如此,它在進(jìn)入人體后,無(wú)法被蛋白酶完全消化成小肽或氨基酸[13]。這些殘存的麩質(zhì)片段可能會(huì)在腸道菌的作用下,產(chǎn)生促炎底物[14]。
對(duì)于健康人群而言,麩質(zhì)殘片的影響幾乎可以忽略不計(jì),然而對(duì)于小麥過(guò)敏、乳糜瀉和非乳糜瀉麩質(zhì)敏感的人群而言,那真是碰都不能碰。
在敏感人群中,攝入麩質(zhì)帶來(lái)的細(xì)胞毒性、免疫原性和腸道滲透性改變等負(fù)面作用被無(wú)限放大[15-17]。
敏感人群在意外攝入麩質(zhì)后,可能會(huì)出現(xiàn)呼吸道過(guò)敏(哮喘、鼻炎)、皮膚問(wèn)題(蕁麻疹)、胃腸道反應(yīng)(腹脹、腹瀉、腹痛)等,嚴(yán)重時(shí)可能會(huì)導(dǎo)致休克[17]。

圖注:麩質(zhì)過(guò)敏導(dǎo)致的副作用
借助前沿生物與醫(yī)學(xué)等手段,麩質(zhì)的蛋白質(zhì)基序(指保守序列,是構(gòu)成任一特征序列的基本結(jié)構(gòu))被描繪出來(lái),我們終于得見(jiàn)其隱藏在序列中的“暗殺密碼”[18]。

圖注:醇溶蛋白的基序結(jié)構(gòu)
麩質(zhì)的“黑暗序列”主要可分為四段(見(jiàn)上圖不同色區(qū)),對(duì)麩質(zhì)敏感的人可能會(huì)同時(shí)受到多個(gè)序列的影響。
紅色——發(fā)揮細(xì)胞毒性[19]
淺綠色——最具免疫原性,能與T細(xì)胞特異性結(jié)合,引發(fā)自身免疫反應(yīng)[20]
藍(lán)色——破壞腸道屏障,產(chǎn)生炎癥,觸發(fā)免疫反應(yīng)[21]
深綠色——促進(jìn)乳糜瀉患者的炎癥因子IL-8釋放[22]
值得一提的是,相當(dāng)數(shù)量的研究發(fā)現(xiàn)乳糜瀉患者存在與大腦和情緒相關(guān)的疾病,其中包括認(rèn)知障礙、自閉癥、精神分裂癥和注意力缺陷綜合征等[23-25],并在無(wú)麩質(zhì)飲食干預(yù)后出現(xiàn)好轉(zhuǎn)[26]。
雖然還未能發(fā)現(xiàn)乳糜瀉患者這些神經(jīng)系統(tǒng)疾病的直接誘因,但鑒于當(dāng)前一眾臨床結(jié)果,學(xué)者們依舊把槍口對(duì)準(zhǔn)了麩質(zhì)。


人人都應(yīng)無(wú)麩質(zhì)?
不,麩質(zhì)也許能讓你活得更長(zhǎng)
說(shuō)到這里,若是硬要給麩質(zhì)貼上個(gè)“好”或“壞”的標(biāo)簽,派派客觀講,暫時(shí)真還做不到。
但現(xiàn)實(shí)中,總有些“非醫(yī)學(xué)力量”能走在科學(xué)前頭,搶先對(duì)科學(xué)問(wèn)題開(kāi)展“解釋”。在這種力量的推波助瀾下,無(wú)麩質(zhì)飲食走向了舞臺(tái)中央。
不少公眾人物也曾在節(jié)目或社交平臺(tái)上表示自己支持無(wú)麩質(zhì)飲食。

圖注:部分采用無(wú)麩質(zhì)飲食的明星
鐘擺去往一側(cè),一邊倒的言論讓大家選擇性忽視麩質(zhì)的優(yōu)點(diǎn),口耳相傳都是:麩質(zhì)是毒蛋白,所有食物都該排除麩質(zhì)。但事實(shí)果真如此嗎?
雖然對(duì)于敏感人群而言,無(wú)麩質(zhì)飲食的確能起到改善胃腸、骨骼健康與精神面貌等多方面作用[17]。
但放在機(jī)能正常、吃下麩質(zhì)也沒(méi)什么異常反應(yīng)的普通人身上,卻沒(méi)有證據(jù)說(shuō)明無(wú)麩質(zhì)飲食的益處[27],且長(zhǎng)期攝入麩質(zhì)也沒(méi)讓結(jié)腸炎風(fēng)險(xiǎn)率[28]、重要的代謝指標(biāo)(如體脂率、膽固醇、甘油三酯、C反應(yīng)蛋白等)[29]、認(rèn)知能力[30]等走上下坡路。
不僅如此,麩質(zhì)的酶解物還可能具有延壽價(jià)值!

研究將模式動(dòng)物秀麗線蟲(chóng)暴露在不同濃度的麩質(zhì)酶解物環(huán)境中,發(fā)現(xiàn)線蟲(chóng)的腸道健康與行動(dòng)能力得到改善,最終擁有了更長(zhǎng)的健康壽命[31]。這些益處可能要?dú)w功于麩質(zhì)酶解物先前被證實(shí)的抗氧化[32]、修復(fù)肌肉損傷[33]及改善肝臟炎癥[34]的功效。

圖注:麩質(zhì)酶解物添加對(duì)秀麗線蟲(chóng)壽命的影響
所以,限制麩質(zhì)攝入不太可能為健康人群提供代謝益處,相反適量攝入或許有可能的延壽功效。
那為何我們又用了“可能延壽”這樣模糊的說(shuō)法?這是由于當(dāng)前麩質(zhì)與生物體壽命關(guān)聯(lián)的研究非常少,證據(jù)的邏輯鏈條確實(shí)有些單薄。

《麩質(zhì)食用指南》
寫到這里,我們可以初步下個(gè)結(jié)論:麩質(zhì)并非洪水猛獸,可以吃,但部分人卻真的碰不得。
那么,我如何知道自己是否能吃麩質(zhì)?日常生活中哪些食物富含麩質(zhì)?無(wú)麩質(zhì)飲食需求者又該吃什么?
如果你有上述困惑,那時(shí)光派精心總結(jié)的這份《麩質(zhì)食用指南》剛好適合你。
不盲目跟風(fēng),選擇適合自己的飲食方式,才是積極對(duì)待生活的正確方式。
—— TIMEPIE ——
不想錯(cuò)過(guò)延壽前沿精彩內(nèi)容?
那就點(diǎn)進(jìn)時(shí)光派主頁(yè)關(guān)注吧!

參考文獻(xiàn)
[1] Gluten and Food Labeling. (2021). Retrieved 23 July 2021, from https://www.fda.gov/food/nutrition-education-resources-materials/gluten-and-food-labeling
[2] Yan, D., & Holt, P. R. (2009). Willem Dicke. Brilliant clinical observer and translational investigator. Discoverer of the toxic cause of celiac disease. Clinical and translational science, 2(6), 446–448. https://doi.org/10.1111/j.1752-8062.2009.00167.x
[3] Wieser H. (2007). Chemistry of gluten proteins. Food microbiology, 24(2), 115–119. https://doi.org/10.1016/j.fm.2006.07.004
[4] Shewry P.R., Tatham A.S. (1999) The Characteristics, Structures and Evolutionary Relationships of Prolamins. In: Shewry P.R., Casey R. (eds) Seed Proteins. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4431-5_2
[5] Biesiekierski J. R. (2017). What is gluten?. Journal of gastroenterology and hepatology, 32 Suppl 1, 78–81. https://doi.org/10.1111/jgh.13703
[6] Lebwohl, B., Cao, Y., Zong, G., Hu, F. B., Green, P., Neugut, A. I., Rimm, E. B., Sampson, L., Dougherty, L. W., Giovannucci, E., Willett, W. C., Sun, Q., & Chan, A. T. (2017). Long term gluten consumption in adults without celiac disease and risk of coronary heart disease: prospective cohort study. BMJ (Clinical research ed.), 357, j1892. https://doi.org/10.1136/bmj.j1892
[7] Liu, S., STampfer, M. J., Hu, F. B., Giovannucci, E., Rimm, E., Manson, J. E., Hennekens, C. H., & Willett, W. C. (1999). Whole-grain consumption and risk of coronary heart disease: results from the Nurses' Health Study. The American journal of clinical nutrition, 70(3), 412–419. https://doi.org/10.1093/ajcn/70.3.412
[8] Mellen, P. B., Walsh, T. F., & Herrington, D. M. (2008). Whole grain intake and cardiovascular disease: a meta-analysis. Nutrition, metabolism, and cardiovascular diseases : NMCD, 18(4), 283–290. https://doi.org/10.1016/j.numecd.2006.12.008
[9] de Munter, J. S., Hu, F. B., Spiegelman, D., Franz, M., & van Dam, R. M. (2007). Whole grain, bran, and germ intake and risk of type 2 diabetes: a prospective cohort study and systematic review. PLoS medicine, 4(8), e261. https://doi.org/10.1371/journal.pmed.0040261
[10] Johnsen, N. F., Frederiksen, K., Christensen, J., Skeie, G., Lund, E., Landberg, R., Johansson, I., Nilsson, L. M., Halkj?r, J., Olsen, A., Overvad, K., & Tj?nneland, A. (2015). Whole-grain products and whole-grain types are associated with lower all-cause and cause-specific mortality in the Scandinavian HELGA cohort. The British journal of nutrition, 114(4), 608–623. https://doi.org/10.1017/S0007114515001701
[11] Koh-Banerjee, P., Franz, M., Sampson, L., Liu, S., Jacobs, D. R., Jr, Spiegelman, D., Willett, W., & Rimm, E. (2004). Changes in whole-grain, bran, and cereal fiber consumption in relation to 8-y weight gain among men. The American journal of clinical nutrition, 80(5), 1237–1245.
[12] Liu, S., STampfer, M. J., Hu, F. B., Giovannucci, E., Rimm, E., Manson, J. E., Hennekens, C. H., & Willett, W. C. (1999). Whole-grain consumption and risk of coronary heart disease: results from the Nurses' Health Study. The American journal of clinical nutrition, 70(3), 412–419. https://doi.org/10.1093/ajcn/70.3.412
[13] Um, C.Y., Campbell, P.T., Carter, B. et al. Association between grains, gluten and the risk of colorectal cancer in the Cancer Prevention Study-II Nutrition Cohort. Eur J Nutr 59, 1739–1749 (2020). https://doi.org/10.1007/s00394-019-02032-2
[14] Ferretti, G., Bacchetti, T., Masciangelo, S., & Saturni, L. (2012). Celiac Disease, Inflammation and Oxidative Damage: A Nutrigenetic Approach. Nutrients, 4(4), 243–257. doi:10.3390/nu4040243
[15] Sapone, A., Bai, J.C., Ciacci, C. et al. Spectrum of gluten-related disorders: consensus on new nomenclature and classification. BMC Med 10, 13 (2012). https://doi.org/10.1186/1741-7015-10-13
[16] Caminero, A., Nistal, E., Herrán, A. R., Pérez-Andrés, J., Vaquero, L., Vivas, S., . . . Casqueiro, J. (2014). Gluten Metabolism in Humans. Involvement of the Gut Microbiota. Wheat and Rice in Disease Prevention and Health, 157-170. doi:10.1016/B978-0-12-401716-0.00013-1
[17] Balakireva, A., & Zamyatnin, A. (2016). Properties of Gluten Intolerance: Gluten Structure, Evolution, Pathogenicity and Detoxification Capabilities. Nutrients, 8(10), 644. doi:10.3390/nu8100644
[18] Fasano A. (2011). Zonulin and its regulation of intestinal barrier function: the biological door to inflammation, autoimmunity, and cancer. Physiological reviews, 91(1), 151–175. https://doi.org/10.1152/physrev.00003.2008
[19] Maiuri, L., Troncone, R., Mayer, M., Coletta, S., Picarelli, A., De Vincenzi, M., Pavone, V., & Auricchio, S. (1996). In vitro activities of A-gliadin-related synthetic peptides: damaging effect on the atrophic coeliac mucosa and activation of mucosal immune response in the treated coeliac mucosa. Scandinavian journal of gastroenterology, 31(3), 247–253. https://doi.org/10.3109/00365529609004874
[20] Shan, L., Molberg, ?., Parrot, I., Hausch, F., Filiz, F., Gray, G. M., Sollid, L. M., & Khosla, C. (2002). Structural basis for gluten intolerance in celiac sprue. Science (New York, N.Y.), 297(5590), 2275–2279. https://doi.org/10.1126/science.1074129
[21] Lammers, K. M., Lu, R., Brownley, J., Lu, B., Gerard, C., Thomas, K., Rallabhandi, P., Shea-Donohue, T., Tamiz, A., Alkan, S., Netzel-Arnett, S., Antalis, T., Vogel, S. N., & Fasano, A. (2008). Gliadin induces an increase in intestinal permeability and zonulin release by binding to the chemokine receptor CXCR3. Gastroenterology, 135(1), 194–204.e3. https://doi.org/10.1053/j.gastro.2008.03.023
[22] Lammers, K. M., Khandelwal, S., Chaudhry, F., Kryszak, D., Puppa, E. L., Casolaro, V., & Fasano, A. (2011). Identification of a novel immunomodulatory gliadin peptide that causes interleukin-8 release in a chemokine receptor CXCR3-dependent manner only in patients with coeliac disease. Immunology, 132(3), 432–440. https://doi.org/10.1111/j.1365-2567.2010.03378.x
[23] Bürk, K., B?sch, S., Müller, C. A., Melms, A., Zühlke, C., Stern, M., Besenthal, I., Skalej, M., Ruck, P., Ferber, S., Klockgether, T., & Dichgans, J. (2001). Sporadic cerebellar ataxia associated with gluten sensitivity. Brain : a journal of neurology, 124(Pt 5), 1013–1019. https://doi.org/10.1093/brain/124.5.1013
[24] Hu, W. T., Murray, J. A., Greenaway, M. C., Parisi, J. E., & Josephs, K. A. (2006). Cognitive impairment and celiac disease. Archives of neurology, 63(10), 1440–1446. https://doi.org/10.1001/archneur.63.10.1440
[25] Casella, S., Zanini, B., Lanzarotto, F., Ricci, C., Marengoni, A., Romanelli, G., & Lanzini, A. (2012). Cognitive performance is impaired in coeliac patients on gluten free diet: a case-control study in patients older than 65 years of age. Digestive and liver disease : official journal of the Italian Society of Gastroenterology and the Italian Association for the Study of the Liver, 44(9), 729–735. https://doi.org/10.1016/j.dld.2012.03.008
[26] Ergün, C., Urhan, M., & Ayer, A. (2018). A review on the relationship between gluten and schizophrenia: Is gluten the cause? Nutritional Neuroscience, 21(7), 455-466. Retrieved from https://doi.org/10.1080/1028415X.2017.1313569. doi:10.1080/1028415X.2017.1313569
[27] Niland, B., & Cash, B. D. (2018). Health Benefits and Adverse Effects of a Gluten-Free Diet in Non-Celiac Disease Patients. Gastroenterology & hepatology, 14(2), 82–91.
[28] Liu, P. H., Lebwohl, B., Burke, K. E., Ivey, K. L., Ananthakrishnan, A. N., Lochhead, P., Olen, O., Ludvigsson, J. F., Richter, J. M., Chan, A. T., & Khalili, H. (2019). Dietary Gluten Intake and Risk of Microscopic Colitis Among US Women without Celiac Disease: A Prospective Cohort Study. The American journal of gastroenterology, 114(1), 127–134. https://doi.org/10.1038/s41395-018-0267-5
[29] Behrendt, I., Fasshauer, M. & Eichner, G. Gluten intake and metabolic health: conflicting findings from the UK Biobank. Eur J Nutr 60, 1547–1559 (2021). https://doi.org/10.1007/s00394-020-02351-9
[30] Wang, Y., Lebwohl, B., Mehta, R., Cao, Y., Green, P., Grodstein, F., Jovani, M., Lochhead, P., Okereke, O. I., Sampson, L., Willett, W. C., Sun, Q., & Chan, A. T. (2021). Long-term Intake of Gluten and Cognitive Function Among US Women. JAMA network open, 4(5), e2113020. https://doi.org/10.1001/jamanetworkopen.2021.13020
[31] Zhang, W., Lv, T., Li, M., Wu, Q., Yang, L., Liu, H., Sun, D., Sun, L., Zhuang, Z., & Wang, D. (2013). Beneficial effects of wheat gluten hydrolysate to extend lifespan and induce stress resistance in nematode Caenorhabditis elegans. PloS one, 8(9), e74553. https://doi.org/10.1371/journal.pone.0074553
[32] Park, E. Y., Imazu, H., Matsumura, Y., Nakamura, Y., & Sato, K. (2012). Effects of peptide fractions with different isoelectric points from wheat gluten hydrolysates on lipid oxidation in pork meat patties. Journal of agricultural and food chemistry, 60(30), 7483–7488. https://doi.org/10.1021/jf301532e
[33] Aoki, K., Kohmura, Y., Suzuki, Y., Koikawa, N., Yoshimura, M., Aoba, Y., Fukushi, N., Sakuraba, K., Nagaoka, I., & Sawaki, K. (2012). Post-training consumption of wheat gluten hydrolysate suppresses the delayed onset of muscle injury in soccer players. Experimental and therapeutic medicine, 3(6), 969–972. https://doi.org/10.3892/etm.2012.539
[34] Sato, K., Egashira, Y., Ono, S., Mochizuki, S., Shimmura, Y., Suzuki, Y., Nagata, M., Hashimoto, K., Kiyono, T., Park, E. Y., Nakamura, Y., Itabashi, M., Sakata, Y., Furuta, S., & Sanada, H. (2013). Identification of a hepatoprotective peptide in wheat gluten hydrolysate against D-galactosamine-induced acute hepatitis in rats. Journal of agricultural and food chemistry, 61(26), 6304–6310. https://doi.org/10.1021/jf400914e