最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網(wǎng) 會(huì)員登陸 & 注冊

三角函數(shù)積分一例

2022-08-07 16:26 作者:艾琳娜的糖果屋  | 我要投稿

一個(gè)老問題,還是挺復(fù)雜的,計(jì)算%0A%5Cint_0%5E%7B%5Cfrac%7B%5Cpi%7D%7B2%7D%7D%7B%5Cfrac%7Bx%5E2%5Cln%20%5Cleft(%202%5Ccos%20x%20%5Cright)%7D%7B%5Cleft(%20x%5E2%2B%5Cln%20%5E2%5Cleft(%202%5Ccos%20x%20%5Cright)%20%5Cright)%20%5E2%7Ddx%7D%0A

首先注意到%0A%5Cint_0%5E%7B%5Cfrac%7B%5Cpi%7D%7B2%7D%7D%7B%5Cfrac%7Bx%5E2%5Cln%20%5Cleft(%202%5Ccos%20x%20%5Cright)%7D%7B%5Cleft(%20x%5E2%2B%5Cln%20%5Cleft(%202%5Ccos%20x%20%5Cright)%20%5Cright)%20%5E2%7Ddx%7D%3D%5Cmathrm%7BIm%7D%5Cfrac%7B1%7D%7B2%7D%5Cint_0%5E%7B%5Cfrac%7B%5Cpi%7D%7B2%7D%7D%7B%5Cfrac%7Bx%7D%7B%5Cln%20%5E2%5Cleft(%201%2Be%5E%7B-2ix%7D%20%5Cright)%7Ddx%7D%3D%5Cfrac%7B%5Cmathrm%7BIm%7D%7D%7B8%7D%5Cint_0%5E%7B%5Cpi%7D%7B%5Cfrac%7Bx%7D%7B%5Cln%20%5E2%5Cleft(%201%2Be%5E%7B-ix%7D%20%5Cright)%7Ddx%7D%3D-%5Cfrac%7B%5Cmathrm%7BIm%7D%7D%7B8%7D%5Cint_L%7B%5Cfrac%7B%5Cln%20z%7D%7Bz%5Cln%20%5E2%5Cleft(%201%2B%5Cfrac%7B1%7D%7Bz%7D%20%5Cright)%7Ddz%7D%0A%0A

這里的路徑為%0AL%3AC_%7B%5Cdelta%7D%5Crightarrow%201-%5Cdelta%20%5Crightarrow%201%5Crightarrow%20C_%7BR%3D1%7D%5Crightarrow%20C_%7B%5Cepsilon%7D%5Crightarrow%201-%5Cepsilon%20%5Crightarrow%201-%5Cdelta%20%5Crightarrow%20C_%7B%5Cdelta%7D%0A%0A

根據(jù)柯西積分定理有%0A%5Cint_C%7B%5Cfrac%7B%5Cln%20z%7D%7Bz%5Cln%20%5E2%5Cleft(%201%2B%5Cfrac%7B1%7D%7Bz%7D%20%5Cright)%7Ddz%7D%2B%5Cint_0%5E1%7B%5Cfrac%7B%5Cln%20x%7D%7Bx%5Cln%20%5E2%5Cleft(%201%2B%5Cfrac%7B1%7D%7Bx%7D%20%5Cright)%7Ddx%7D%2B%5Cint_1%5E0%7B%5Cfrac%7B%5Cln%20x%2Bi%5Cpi%7D%7B-x%5Cleft(%20%5Cln%20%5Cleft(%201-x%20%5Cright)%20-%5Cln%20x-i%5Cpi%20%5Cright)%20%5E2%7D-dx%7D%3D0%0A%0A%0A

化解一下就可以得到%0A%5Cmathrm%7BIm%7D%5Cint_C%7B%5Cfrac%7B%5Cln%20z%7D%7Bz%5Cln%20%5E2%5Cleft(%201%2B%5Cfrac%7B1%7D%7Bz%7D%20%5Cright)%7Ddz%7D%3D%5Cmathrm%7BIm%7D%5Cint_0%5E1%7B%5Cfrac%7B%5Cln%20x%2Bi%5Cpi%7D%7Bx%5Cleft(%20%5Cln%20%5Cleft(%20%5Cfrac%7B1-x%7D%7Bx%7D%20%5Cright)%20-i%5Cpi%20%5Cright)%20%5E2%7Ddx%7D%3D%5Cmathrm%7BIm%7D%5Cint_0%5E1%7B%5Cfrac%7B%5Cleft(%20%5Cln%20x%2Bi%5Cpi%20%5Cright)%20%5Cleft(%20%5Cln%20%5Cleft(%20%5Cfrac%7B1-x%7D%7Bx%7D%20%5Cright)%20%2Bi%5Cpi%20%5Cright)%20%5E2%7D%7Bx%5Cleft(%20%5Cln%20%5E2%5Cleft(%20%5Cfrac%7B1-x%7D%7Bx%7D%20%5Cright)%20%2B%5Cpi%20%5E2%20%5Cright)%20%5E2%7Ddx%7D%3D%5Cint_0%5E1%7B%5Cfrac%7B2%5Cpi%20%5Cln%20x%5Cln%20%5Cleft(%20%5Cfrac%7B1-x%7D%7Bx%7D%20%5Cright)%20%2B%5Cpi%20%5Cleft(%20%5Cln%20%5E2%5Cleft(%20%5Cfrac%7B1-x%7D%7Bx%7D%20%5Cright)%20-%5Cpi%20%5E2%20%5Cright)%7D%7Bx%5Cleft(%20%5Cln%20%5E2%5Cleft(%20%5Cfrac%7B1-x%7D%7Bx%7D%20%5Cright)%20%2B%5Cpi%20%5E2%20%5Cright)%20%5E2%7Ddx%7D%5Cxrightarrow%7B%5Cfrac%7B1-x%7D%7Bx%7D%3Du%7D%0A%5C%5C%0A%3D-2%5Cpi%20%5Cint_0%5E%7B%5Cinfty%7D%7B%5Cfrac%7B%5Cln%20%5Cleft(%201%2Bu%20%5Cright)%20%5Cln%20u%7D%7B%5Cleft(%201%2Bu%20%5Cright)%20%5Cleft(%20%5Cln%20%5E2u%2B%5Cpi%20%5E2%20%5Cright)%20%5E2%7Ddx%7D-%5Cpi%20%5Cint_0%5E%7B%5Cinfty%7D%7B%5Cfrac%7B%5Cleft(%20%5Cln%20%5E2u-%5Cpi%20%5E2%20%5Cright)%7D%7B%5Cleft(%201%2Bu%20%5Cright)%20%5Cleft(%20%5Cln%20%5E2u%2B%5Cpi%20%5E2%20%5Cright)%20%5E2%7Ddx%7D%0A%0A%0A

首先計(jì)算后面那個(gè)積分%0A%5Cint_0%5E%7B%5Cinfty%7D%7B%5Cfrac%7B%5Cleft(%20%5Cln%20%5E2u-%5Cpi%20%5E2%20%5Cright)%7D%7B%5Cleft(%201%2Bu%20%5Cright)%20%5Cleft(%20%5Cln%20%5E2u%2B%5Cpi%20%5E2%20%5Cright)%20%5E2%7Ddx%7D%3D%5Cint_0%5E%7B%5Cinfty%7D%7B%5Cfrac%7B%5Cleft(%20%5Cln%20%5E2u-%5Cpi%20%5E2%20%5Cright)%7D%7Bu%5Cleft(%201%2Bu%20%5Cright)%20%5Cleft(%20%5Cln%20%5E2u%2B%5Cpi%20%5E2%20%5Cright)%20%5E2%7Ddx%7D%3D%5Cfrac%7B1%7D%7B2%7D%5Cint_0%5E%7B%5Cinfty%7D%7B%5Cfrac%7B%5Cln%20%5E2u-%5Cpi%20%5E2%7D%7Bu%5Cleft(%20%5Cln%20%5E2u%2B%5Cpi%20%5E2%20%5Cright)%20%5E2%7Ddu%7D%3D%5Cfrac%7B1%7D%7B2%7D%5Cint_%7B-%5Cinfty%7D%5E%7B%5Cinfty%7D%7B%5Cfrac%7Bx%5E2-%5Cpi%20%5E2%7D%7B%5Cleft(%20x%5E2%2B%5Cpi%20%5E2%20%5Cright)%20%5E2%7Ddx%7D%3D0%0A%0A

其次對于前一部分可以先分部積分處理一下%0A%5Cint_0%5E%7B%5Cinfty%7D%7B%5Cfrac%7B%5Cln%20%5Cleft(%201%2Bu%20%5Cright)%20%5Cln%20u%7D%7B%5Cleft(%201%2Bu%20%5Cright)%20%5Cleft(%20%5Cln%20%5E2u%2B%5Cpi%20%5E2%20%5Cright)%20%5E2%7Ddx%7D%3D%5Cfrac%7B1%7D%7B2%7D%5Cint_0%5E%7B%5Cinfty%7D%7B%5Cfrac%7Bu%5Cln%20%5Cleft(%201%2Bu%20%5Cright)%7D%7B%5Cleft(%201%2Bu%20%5Cright)%7Dd%5Cleft(%20-%5Cfrac%7B1%7D%7B%5Cleft(%20%5Cln%20%5E2u%2B%5Cpi%20%5E2%20%5Cright)%7D%20%5Cright)%7D%3D%5Cfrac%7B1%7D%7B2%7D%5Cint_0%5E%7B%5Cinfty%7D%7B%5Cfrac%7B1%7D%7B%5Cleft(%20%5Cln%20%5E2u%2B%5Cpi%20%5E2%20%5Cright)%7Dd%5Cleft(%20%5Cfrac%7Bu%5Cln%20%5Cleft(%201%2Bu%20%5Cright)%7D%7B%5Cleft(%201%2Bu%20%5Cright)%7D%20%5Cright)%7D%0A%0A%0A%0A%0A

%3D%5Cfrac%7B1%7D%7B2%7D%5Cint_0%5E%7B%5Cinfty%7D%7B%5Cfrac%7B%5Cleft(%20%5Cln%20%5Cleft(%201%2Bu%20%5Cright)%20%2B%5Cfrac%7Bu%7D%7B1%2Bu%7D%20%5Cright)%20%5Cleft(%201%2Bu%20%5Cright)%20-u%5Cln%20%5Cleft(%201%2Bu%20%5Cright)%7D%7B%5Cleft(%201%2Bu%20%5Cright)%20%5E2%5Cleft(%20%5Cln%20%5E2u%2B%5Cpi%20%5E2%20%5Cright)%7Ddu%7D%0A%0A%3D%5Cfrac%7B1%7D%7B2%7D%5Cint_0%5E%7B%5Cinfty%7D%7B%5Cfrac%7B%5Cln%20%5Cleft(%201%2Bu%20%5Cright)%7D%7B%5Cleft(%201%2Bu%20%5Cright)%20%5E2%5Cleft(%20%5Cln%20%5E2u%2B%5Cpi%20%5E2%20%5Cright)%7Ddu%7D%2B%5Cfrac%7B1%7D%7B2%7D%5Cint_0%5E%7B%5Cinfty%7D%7B%5Cfrac%7Bu%7D%7B%5Cleft(%201%2Bu%20%5Cright)%20%5E2%5Cleft(%20%5Cln%20%5E2u%2B%5Cpi%20%5E2%20%5Cright)%7Ddu%7D%5C%2C%5C%2C%20%0A

再利用一個(gè)常用結(jié)論%0A%5Cint_0%5E%7B%5Cinfty%7D%7B%5Cfrac%7B1%7D%7B%5Cleft(%20a%2Bu%20%5Cright)%20%5Cleft(%20%5Cln%20%5E2u%2B%5Cpi%20%5E2%20%5Cright)%7Ddu%7D%3D%5Cfrac%7B1%7D%7B%5Cln%20a%7D-%5Cfrac%7B1%7D%7Ba-1%7D%5Cleft(%20a%3E0%20%5Cright)%20%0A%0A可以方便的計(jì)算出后面的積分%0A%5Cint_0%5E%7B%5Cinfty%7D%7B%5Cfrac%7Bu%7D%7B%5Cleft(%201%2Bu%20%5Cright)%20%5E2%5Cleft(%20%5Cln%20%5E2u%2B%5Cpi%20%5E2%20%5Cright)%7Ddu%7D%3D%5Cint_0%5E%7B%5Cinfty%7D%7B%5Cfrac%7B1%7D%7B%5Cleft(%201%2Bu%20%5Cright)%20%5Cleft(%20%5Cln%20%5E2u%2B%5Cpi%20%5E2%20%5Cright)%7Ddu%7D-%5Cint_0%5E%7B%5Cinfty%7D%7B%5Cfrac%7B1%7D%7B%5Cleft(%201%2Bu%20%5Cright)%20%5E2%5Cleft(%20%5Cln%20%5E2u%2B%5Cpi%20%5E2%20%5Cright)%7Ddu%7D

%3D%5Clim_%7Ba%5Crightarrow%201%7D%20%5Cleft%5C%7B%20%5Cfrac%7B1%7D%7B%5Cln%20a%7D-%5Cfrac%7B1%7D%7Ba-1%7D%2B%5Cfrac%7Bd%7D%7Bda%7D%5Cleft(%20%5Cfrac%7B1%7D%7B%5Cln%20a%7D-%5Cfrac%7B1%7D%7Ba-1%7D%20%5Cright)%20%5Cright%5C%7D%20%3D%5Cfrac%7B1%7D%7B2%7D-%5Cfrac%7B1%7D%7B12%7D%3D%5Cfrac%7B5%7D%7B12%7D%0A%0A

對于前一部分,設(shè)置參數(shù)a%0AJ%5Cleft(%20a%20%5Cright)%20%3D%5Cint_0%5E%7B%5Cinfty%7D%7B%5Cfrac%7B%5Cln%20%5Cleft(%201%2Bau%20%5Cright)%7D%7B%5Cleft(%201%2Bu%20%5Cright)%20%5E2%5Cleft(%20%5Cln%20%5E2u%2B%5Cpi%20%5E2%20%5Cright)%7Ddu%7D%5C%2C%5C%2CJ%5Cleft(%200%20%5Cright)%20%3D0%0A%0A

J'%5Cleft(%20a%20%5Cright)%20%3D%5Cint_0%5E%7B%5Cinfty%7D%7B%5Cfrac%7Bu%7D%7B%5Cleft(%201%2Bu%20%5Cright)%20%5E2%5Cleft(%201%2Bau%20%5Cright)%20%5Cleft(%20%5Cln%20%5E2u%2B%5Cpi%20%5E2%20%5Cright)%7Ddu%7D%0A%0A,部分分式拆分一下有

%0A%3D-%5Cfrac%7Ba%7D%7B%5Cleft(%201-a%20%5Cright)%20%5E2%7D%5Cint_0%5E%7B%5Cinfty%7D%7B%5Cfrac%7Bdu%7D%7B%5Cleft(%201%2Bau%20%5Cright)%20%5Cleft(%20%5Cln%20%5E2u%2B%5Cpi%20%5E2%20%5Cright)%7D%7D%2B%5Cfrac%7B1%7D%7B%5Cleft(%201-a%20%5Cright)%20%5E2%7D%5Cint_0%5E%7B%5Cinfty%7D%7B%5Cfrac%7Bdu%7D%7B%5Cleft(%201%2Bu%20%5Cright)%20%5Cleft(%20%5Cln%20%5E2u%2B%5Cpi%20%5E2%20%5Cright)%7D%7D-%5Cfrac%7B1%7D%7B1-a%7D%5Cint_0%5E%7B%5Cinfty%7D%7B%5Cfrac%7Bdu%7D%7B%5Cleft(%201%2Bu%20%5Cright)%20%5E2%5Cleft(%20%5Cln%20%5E2u%2B%5Cpi%20%5E2%20%5Cright)%7D%7D%0A%0A

%0A%3D%5Cfrac%7B1%7D%7B%5Cleft(%201-a%20%5Cright)%20%5E2%5Cln%20a%7D%2B%5Cfrac%7Ba%7D%7B%5Cleft(%201-a%20%5Cright)%20%5E3%7D%2B%5Cfrac%7B1%7D%7B2%5Cleft(%201-a%20%5Cright)%20%5E2%7D-%5Cfrac%7B1%7D%7B12%5Cleft(%201-a%20%5Cright)%7D%5C%2C%5C%2C%20%0A

于是可以得到%0AJ%3DJ%5Cleft(%201%20%5Cright)%20%3D%5Cint_0%5E1%7B%5Cleft(%20%5Cfrac%7B1%7D%7B%5Cleft(%201-a%20%5Cright)%20%5E2%5Cln%20a%7D%2B%5Cfrac%7Ba%7D%7B%5Cleft(%201-a%20%5Cright)%20%5E3%7D%2B%5Cfrac%7B1%7D%7B2%5Cleft(%201-a%20%5Cright)%20%5E2%7D-%5Cfrac%7B1%7D%7B12%5Cleft(%201-a%20%5Cright)%7D%20%5Cright)%20da%7D%0A%0A

%0A%3D%5Cint_0%5E%7B%5Cinfty%7D%7B%5Cleft(%20-%5Cfrac%7B1%7D%7B%5Cleft(%201-e%5E%7B-x%7D%20%5Cright)%20%5E2x%7D%2B%5Cfrac%7Be%5E%7B-x%7D%7D%7B%5Cleft(%201-e%5E%7B-x%7D%20%5Cright)%20%5E3%7D%2B%5Cfrac%7B1%7D%7B2%5Cleft(%201-e%5E%7B-x%7D%20%5Cright)%20%5E2%7D-%5Cfrac%7B1%7D%7B12%5Cleft(%201-e%5E%7B-x%7D%20%5Cright)%7D%20%5Cright)%20e%5E%7B-x%7Ddx%7D%0A%0A

為了求得結(jié)果,依然是設(shè)置參數(shù)%0AI%5Cleft(%20s%20%5Cright)%20%3D%5Cint_0%5E%7B%5Cinfty%7D%7B%5Cleft(%20-%5Cfrac%7B1%7D%7B%5Cleft(%201-e%5E%7B-x%7D%20%5Cright)%20%5E2x%7D%2B%5Cfrac%7Be%5E%7B-x%7D%7D%7B%5Cleft(%201-e%5E%7B-x%7D%20%5Cright)%20%5E3%7D%2B%5Cfrac%7B1%7D%7B2%5Cleft(%201-e%5E%7B-x%7D%20%5Cright)%20%5E2%7D-%5Cfrac%7B1%7D%7B12%5Cleft(%201-e%5E%7B-x%7D%20%5Cright)%7D%20%5Cright)%20e%5E%7B-x%7Dx%5Esdx%7D%0A%0A

%0A%3D%5Cint_0%5E%7B%5Cinfty%7D%7B%5Cleft(%20-%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7D%7Bne%5E%7B-nx%7Dx%5E%7Bs-1%7D%7D%2B%5Cfrac%7B1%7D%7B2%7D%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7D%7Bn%5Cleft(%20n%2B1%20%5Cright)%20e%5E%7B-%5Cleft(%20n%2B1%20%5Cright)%20x%7Dx%5Es%7D%2B%5Cfrac%7B1%7D%7B2%7D%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7D%7Bne%5E%7B-nx%7Dx%5Es%7D-%5Cfrac%7B1%7D%7B12%7D%5Csum_%7Bn%3D0%7D%5E%7B%5Cinfty%7D%7Be%5E%7B-%5Cleft(%20n%2B1%20%5Cright)%20x%7Dx%5Es%7D%20%5Cright)%20dx%7D%0A%0A

%0A%3D-%5CGamma%20%5Cleft(%20s%20%5Cright)%20%5Czeta%20%5Cleft(%20s-1%20%5Cright)%20%2B%5Cfrac%7B1%7D%7B2%7D%5CGamma%20%5Cleft(%20s%2B1%20%5Cright)%20%5Cleft(%20%5Czeta%20%5Cleft(%20s-1%20%5Cright)%20-%5Czeta%20%5Cleft(%20s%20%5Cright)%20%5Cright)%20%2B%5Cfrac%7B1%7D%7B2%7D%5CGamma%20%5Cleft(%20s%2B1%20%5Cright)%20%5Czeta%20%5Cleft(%20s%20%5Cright)%20-%5Cfrac%7B1%7D%7B12%7D%5CGamma%20%5Cleft(%20s%2B1%20%5Cright)%20%5Czeta%20%5Cleft(%201%2Bs%20%5Cright)%20%0A%0A

%0A%3D%5Czeta%20%5Cleft(%20s-1%20%5Cright)%20%5CGamma%20%5Cleft(%20s%20%5Cright)%20%5Cleft(%20%5Cfrac%7Bs%7D%7B2%7D-1%20%5Cright)%20-%5Cfrac%7B1%7D%7B12%7D%5CGamma%20%5Cleft(%20s%2B1%20%5Cright)%20%5Czeta%20%5Cleft(%201%2Bs%20%5Cright)%20%0A%0A

再利用以下泰勒展開和洛朗展開%5Czeta%20%5Cleft(%20s-1%20%5Cright)%20%3D-%5Cfrac%7B1%7D%7B12%7D%2B%5Cleft(%20%5Cfrac%7B1%7D%7B12%7D-%5Cln%20A%20%5Cright)%20s%2BO%5Cleft(%20s%20%5Cright)%20%5C%2C%5C%2C%5CGamma%20%5Cleft(%20s%20%5Cright)%20%3D%5Cfrac%7B1%7D%7Bs%7D-%5Cgamma%20%2BO%5Cleft(%20s%20%5Cright)%20%5C%2C%5C%2C%5Czeta%20%5Cleft(%201%2Bs%20%5Cright)%20%3D%5Cfrac%7B1%7D%7Bs%7D%2B%5Cgamma%20%2BO%5Cleft(%20s%20%5Cright)%20%5C%2C%5C%2C%5Cleft(%20s%5Crightarrow%200%20%5Cright)%20%0A%0A

(A是%0AGlaisher-Kinkelin%5C%2C%5C%2CConstant%0A)不難得到

%0A%5Czeta%20%5Cleft(%20s-1%20%5Cright)%20%5CGamma%20%5Cleft(%20s%20%5Cright)%20%5Cleft(%20%5Cfrac%7Bs%7D%7B2%7D-1%20%5Cright)%20-%5Cfrac%7B1%7D%7B12%7D%5CGamma%20%5Cleft(%20s%2B1%20%5Cright)%20%5Czeta%20%5Cleft(%201%2Bs%20%5Cright)%20%3D%5Cleft(%20%5Cln%20A-%5Cfrac%7B%5Cgamma%7D%7B12%7D-%5Cfrac%7B1%7D%7B8%7D%20%5Cright)%20%2BO%5Cleft(%20s%20%5Cright)%20%0A

s%5Crightarrow%200我們就得到了%0A%5Cint_0%5E%7B%5Cinfty%7D%7B%5Cleft(%20-%5Cfrac%7B1%7D%7B%5Cleft(%201-e%5E%7B-x%7D%20%5Cright)%20%5E2x%7D%2B%5Cfrac%7Be%5E%7B-x%7D%7D%7B%5Cleft(%201-e%5E%7B-x%7D%20%5Cright)%20%5E3%7D%2B%5Cfrac%7B1%7D%7B2%5Cleft(%201-e%5E%7B-x%7D%20%5Cright)%20%5E2%7D-%5Cfrac%7B1%7D%7B12%5Cleft(%201-e%5E%7B-x%7D%20%5Cright)%7D%20%5Cright)%20e%5E%7B-x%7Ddx%7D%3D%5Cln%20A-%5Cfrac%7B%5Cgamma%7D%7B12%7D-%5Cfrac%7B1%7D%7B8%7D%5C%2C%5C%2C%20%20%20%0A%0A

整理一下上述結(jié)果就有

%0A%5Cint_0%5E%7B%5Cfrac%7B%5Cpi%7D%7B2%7D%7D%7B%5Cfrac%7Bx%5E2%5Cln%20%5Cleft(%202%5Ccos%20x%20%5Cright)%7D%7B%5Cleft(%20x%5E2%2B%5Cln%20%5E2%5Cleft(%202%5Ccos%20x%20%5Cright)%20%5Cright)%20%5E2%7Ddx%7D%3D%5Cfrac%7B%5Cpi%7D%7B4%7D%5Cleft%5C%7B%20%5Cfrac%7B1%7D%7B2%7D%5Cleft(%20%5Cln%20A-%5Cfrac%7B%5Cgamma%7D%7B12%7D-%5Cfrac%7B1%7D%7B8%7D%20%5Cright)%20%2B%5Cfrac%7B5%7D%7B24%7D%20%5Cright%5C%7D%20%3D%5Cfrac%7B%5Cpi%20%5Cln%20A%7D%7B8%7D-%5Cfrac%7B%5Cpi%20%5Cgamma%7D%7B96%7D%2B%5Cfrac%7B7%5Cpi%7D%7B192%7D%0A%0A

這個(gè)計(jì)算也是用到很多技巧了,分部積分、倒代換、參數(shù)積分求導(dǎo)、圍道積分、漸近展開都給用到了,還是很有代表性的。









三角函數(shù)積分一例的評論 (共 條)

分享到微博請遵守國家法律
辽宁省| 赫章县| 四子王旗| 深水埗区| 东光县| 四川省| 岳阳县| 龙游县| 大同市| 华安县| 阿拉善盟| 雷州市| 封丘县| 南召县| 革吉县| 阿坝县| 泗水县| 巴彦淖尔市| 长治市| 砀山县| 连山| 玉门市| 齐河县| 河间市| 怀远县| 屏东市| 临沭县| 沅江市| 游戏| 黄骅市| 浑源县| 鄂托克旗| 西青区| 镇巴县| 慈溪市| 佛坪县| 九龙县| 成都市| 蕲春县| 科技| 噶尔县|