最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網(wǎng) 會(huì)員登陸 & 注冊

復(fù)習(xí)筆記Day107:華中科技大學(xué)2023數(shù)學(xué)分析參考答案(下)

2023-02-23 23:57 作者:間宮_卓司  | 我要投稿

(續(xù)上)

7.設(shè)f%3A%5Cleft%5B%200%2C1%20%5Cright%5D%20%5Crightarrow%20%5Cleft(%200%2C%2B%5Cinfty%20%5Cright)%20為連續(xù)函數(shù),常數(shù)a%5Cge1,證明

%5Cunderset%7Bn%5Crightarrow%20%5Cinfty%7D%7B%5Clim%7D%5Csqrt%5Bn%5D%7B%5Cint_0%5E1%7B%5Cleft(%20a%2Bx%5En%20%5Cright)%20%5Enf%5Cleft(%20x%20%5Cright)%20%5Cmathrm%7Bd%7Dx%7D%7D%3Da%2B1

這個(gè)感覺就是把典中典的題目魔改了一下,一方面,設(shè)f%5Cleft(%20x%20%5Cright)%20%3CM%2CM%3E0,則

%5Cint_0%5E1%7B%5Cleft(%20a%2Bx%5En%20%5Cright)%20%5Enf%5Cleft(%20x%20%5Cright)%20%5Cmathrm%7Bd%7Dx%7D%3CM%5Cleft(%20a%2B1%20%5Cright)%20%5En

另一方面,因?yàn)?img type="latex" class="latex" src="https://api.bilibili.com/x/web-frontend/mathjax/tex?formula=f(x)" alt="f(x)">連續(xù),所以可以設(shè)f(x)%3Em%3E0,那么

%5Cint_0%5E1%7B%5Cleft(%20a%2Bx%5En%20%5Cright)%20%5Enf%5Cleft(%20x%20%5Cright)%20%5Cmathrm%7Bd%7Dx%7D%3Em%5Cint_%7B1-%5Cfrac%7B2%7D%7Bn%5E2%7D%7D%5E%7B1-%5Cfrac%7B1%7D%7Bn%5E2%7D%7D%7B%5Cleft(%20a%2Bx%5En%20%5Cright)%20%5En%5Cmathrm%7Bd%7Dx%7D%3E%5Cfrac%7Bm%7D%7Bn%5E2%7D%5Cleft(%20a%2B%5Cleft(%201-%5Cfrac%7B2%7D%7Bn%5E2%7D%20%5Cright)%20%5En%20%5Cright)%20%5En

兩邊同時(shí)開n次方取極限可得結(jié)論

8.設(shè)f(x)(-%5Cinfty.%2B%5Cinfty)上可導(dǎo),且對任意xf(x)%3Df(x%2B2k)%3Df(x%2Bb),其中k為正整數(shù),b為無理數(shù),用%5Ctext%7BFourier%7D級(jí)數(shù)理論證明f(x)為常數(shù)

聽說是某年的競賽題,不過我沒有看答案,下面的方法對不對我也不清楚

設(shè)f(x)的最小正周期為2T,若T%3D0,那么依65.1,結(jié)論已經(jīng)成立了,現(xiàn)在設(shè)T%3E0,那么在%5B-T%2CT%5D

f%5Cleft(%20x%20%5Cright)%5Csim%20%20%5Cfrac%7Ba_0%7D%7B2%7D%2B%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7D%7B%5Cleft(%20a_n%5Ccos%20%5Cfrac%7Bn%5Cpi%7D%7BT%7Dx%2Bb_n%5Csin%20%5Cfrac%7Bn%5Cpi%7D%7BT%7Dx%20%5Cright)%7D

又因?yàn)?img type="latex" class="latex" src="https://api.bilibili.com/x/web-frontend/mathjax/tex?formula=f(x)" alt="f(x)">在(-%5Cinfty.%2B%5Cinfty)上可導(dǎo),所以f(x)滿足李普希茲條件,故f(x)收斂于它的傅里葉級(jí)數(shù),也就是

f%5Cleft(%20x%20%5Cright)%20%3D%5Cfrac%7Ba_0%7D%7B2%7D%2B%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7D%7B%5Cleft(%20a_n%5Ccos%20%5Cfrac%7Bn%5Cpi%7D%7BT%7Dx%2Bb_n%5Csin%20%5Cfrac%7Bn%5Cpi%7D%7BT%7Dx%20%5Cright)%7D%2C%5Cforall%20x%5Cin%20R

%5Cfrac%7B%5Cpi%7D%7BT%7D%3Dw,因?yàn)?img type="latex" class="latex" src="https://api.bilibili.com/x/web-frontend/mathjax/tex?formula=%5Ccos%20%5Cfrac%7Bn%5Cpi%7D%7BT%7Dx%2C%5Csin%20%5Cfrac%7Bn%5Cpi%7D%7BT%7Dx" alt="%5Ccos%20%5Cfrac%7Bn%5Cpi%7D%7BT%7Dx%2C%5Csin%20%5Cfrac%7Bn%5Cpi%7D%7BT%7Dx">線性無關(guān),所以

%5Ccos%20wx%3D%5Ccos%20%5Cleft(%20w%5Cleft(%20x%2B2k%20%5Cright)%20%5Cright)%20%3D%5Ccos%20%5Cleft(%20w%5Cleft(%20x%2Bb%20%5Cright)%20%5Cright)%20

這意味著%5Ccos%20wx既以2k為周期,又以b為周期,而%5Ccos%20wxT%3D%5Cfrac%7B2%5Cpi%7D%7Bw%7D為最小正周期,所以存在整數(shù)N%2CM,使得%5Cfrac%7B2%5Cpi%7D%7Bw%7D%3D2Nk%3DMb,那么%5Cfrac%7BN%7D%7BM%7D%3D%5Cfrac%7Bb%7D%7B2k%7D,但是左邊是有理數(shù),右邊是無理數(shù),矛盾

(這出現(xiàn)了偽證嗎?而且其中求傅里葉級(jí)數(shù)完全是多余的)

9.設(shè)二元函數(shù)f(x%2Cy)(x_0%2Cy_0)的某鄰域U內(nèi)有定義,且在U內(nèi)存在偏導(dǎo)數(shù)。證明:若

f_x%5Cleft(%20x%2Cy%20%5Cright)%20%2Cf_y%5Cleft(%20x%2Cy%20%5Cright)%20都在(x_0%2Cy_0)可微,則f_%7Bxy%7D%5Cleft(%20x_0%2Cy_0%20%5Cright)%20%3Df_%7Byx%7D%5Cleft(%20x_0%2Cy_0%20%5Cright)%20

這道題的證明思路類似于課本上證明若f_%7Bxy%7Df_%7Byx%7D連續(xù),則f_%7Bxy%7D%3Df_%7Byx%7D

依題意,有

%5Cbegin%7Baligned%7D%0A%09%26%5Cleft(%20f%5Cleft(%20x%2B%5CDelta%20x%2Cy%20%2B%5CDelta%20y%5Cright)%20-f%5Cleft(%20x%2B%5CDelta%20x%2Cy_0%20%5Cright)%20%5Cright)%20-%5Cleft(%20f%5Cleft(%20x_0%2Cy_0%2B%5CDelta%20y%20%5Cright)%20-f%5Cleft(%20x_0%2Cy_0%20%5Cright)%20%5Cright)%5C%5C%0A%09%26%3D%5CDelta%20x%5Cleft(%20f_x%5Cleft(%20x_0%2B%5Ctheta%20%5CDelta%20x%2Cy_0%2B%5CDelta%20y%20%5Cright)%20-f_x%5Cleft(%20x_0%2B%5Ctheta%20%5CDelta%20x%2Cy_0%20%5Cright)%20%5Cright)%5C%5C%0A%09%26%3D%5CDelta%20x%5Cleft(%20f_x%5Cleft(%20x_0%2Cy_0%20%5Cright)%20%2Bf_%7Bxx%7D%5Cleft(%20x_0%2Cy_0%20%5Cright)%20%5Ctheta%20%5CDelta%20x%2Bf_%7Bxy%7D%5Cleft(%20x_0%2Cy_0%20%5Cright)%20%5CDelta%20y%2B%20%5Cright.%5C%5C%0A%09%26%5Cleft.%20%2Bo%5Cleft(%20%5Csqrt%7B%5CDelta%20x%5E2%2B%5CDelta%20y%5E2%7D%20%5Cright)%20-f_x%5Cleft(%20x_0%2Cy_0%20%5Cright)%20%2Bf_%7Bxx%7D%5Cleft(%20x_0%2Cy_0%20%5Cright)%20%5Ctheta%20%5CDelta%20x%2Bo%5Cleft(%20%5CDelta%20x%20%5Cright)%20%5Cright)%5C%5C%0A%09%26%3D%5CDelta%20x%5CDelta%20yf_%7Bxy%7D%5Cleft(%20x_0%2Cy_0%20%5Cright)%20%2Bo%5Cleft(%20%5Csqrt%7B%5CDelta%20x%5E2%2B%5CDelta%20y%5E2%7D%20%5Cright)%5C%5C%0A%5Cend%7Baligned%7D

同理%5Cbegin%7Baligned%7D%0A%09%26%5Cleft(%20f%5Cleft(%20x%2B%5CDelta%20x%2Cy%2B%5CDelta%20y%20%5Cright)%20-f%5Cleft(%20x%2Cy_0%2B%5CDelta%20y%20%5Cright)%20%5Cright)%20-%5Cleft(%20f%5Cleft(%20x_0%2B%5CDelta%20x%2Cy_0%20%5Cright)%20-f%5Cleft(%20x_0%2Cy_0%20%5Cright)%20%5Cright)%5C%5C%0A%09%26%3D%5CDelta%20x%5CDelta%20yf_%7Byx%7D%5Cleft(%20x_0%2Cy_0%20%5Cright)%20%2Bo%5Cleft(%20%5Csqrt%7B%5CDelta%20x%5E2%2B%5CDelta%20y%5E2%7D%20%5Cright)%5C%5C%0A%5Cend%7Baligned%7D

f_%7Bxy%7D%5Cleft(%20x_0%2Cy_0%20%5Cright)%20%3Df_%7Byx%7D%5Cleft(%20x_0%2Cy_0%20%5Cright)%20

很久沒有給真題搞難度評(píng)估了

難度用技巧性//計(jì)算量來表示,其中綠色表示不需要技巧/計(jì)算量小,橙色表示需要一定的技巧/有一定的計(jì)算量,紅色表示需要如果沒做到過原題就很難想到的技巧/看到題目完全沒有去計(jì)算的欲望。難度評(píng)估僅代表個(gè)人意見

附上去年的

難度肉眼可見的上升


這張考卷如果換現(xiàn)在我去做,估計(jì)第二題沒做完就要撕考卷走人了,只能說幸好沒報(bào)這學(xué)校吧

復(fù)習(xí)筆記Day107:華中科技大學(xué)2023數(shù)學(xué)分析參考答案(下)的評(píng)論 (共 條)

分享到微博請遵守國家法律
陈巴尔虎旗| 平果县| 安丘市| 墨玉县| 宜兰县| 鄂托克旗| 社会| 南华县| 雅安市| 大悟县| 云和县| 玉屏| 万源市| 孝感市| 营口市| 霍城县| 广安市| 沛县| 策勒县| 承德县| 阳春市| 新巴尔虎左旗| 清远市| 泸西县| 甘南县| 东光县| 韶山市| 屏东市| 耒阳市| 兴宁市| 屯留县| 来凤县| 武威市| 阿尔山市| 蓬溪县| 中西区| 桦川县| 合山市| 昂仁县| 北辰区| 偏关县|