最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網(wǎng) 會(huì)員登陸 & 注冊(cè)

無窮乘積——Weierstrass分解定理

2021-12-15 23:35 作者:子瞻Louis  | 我要投稿

無窮乘積

形如%5Cprod_%7Bn%3D1%7D%5E%7B%5Cinfty%7D%20(1%2Bu_n)的式子稱為無窮乘積,其中%5Cleft%5C%7Bu_n%5Cright%5C%7D為一復(fù)數(shù)項(xiàng)或函數(shù)項(xiàng)序列,且u_n%E2%89%A0-1

易知其收斂的必要條件u_n%5Crightarrow0,?而充要條件%5Csum_%7Bn%3D1%7D%5E%5Cinfty%20%5Cln%20(1%2Bu_n)收斂,

(引理)設(shè)u_1%2Cu_2%2C%E2%80%A6是復(fù)數(shù)序列,若

%5Csum_%7Bn%3D1%7D%5E%5Cinfty%20%5Cvert%20u_n%5Cvert%20%EF%BC%9C%5Cinfty

%5Cprod_%7Bn%3D1%7D%5E%5Cinfty%5Cvert1%2Bu_n%5Cvert%EF%BC%9C%5Cinfty

證明 有經(jīng)典的不等式1%2Bx%5Cleq%20e%5Ex,于是1%2B%5Cvert%20u_n%5Cvert%5Cleq%20e%5E%7B%5Cvert%20u_n%5Cvert%7D,即

%5Cprod_%7Bn%3D1%7D%5E%5Cinfty(1%2B%5Cvert%20u_n%5Cvert)%5Cleq%20e%5E%7B%5Csum_%7Bn%3D1%7D%5E%5Cinfty%20%5Cvert%20u_n%5Cvert%7D

又有%5Cvert%20a%2Bb%5Cvert%20%5Cleq%5Cvert%20a%5Cvert%2B%5Cvert%20b%5Cvert,于是%5Cvert%201%2Bu_n%5Cvert%5Cleq1%2B%5Cvert%20u_n%5Cvert,即

%5Cprod_%7Bn%3D1%7D%5E%5Cinfty%5Cvert1%2Bu_n%5Cvert%5Cleq%5Cprod_%7Bn%3D1%7D%5E%5Cinfty(1%2B%5Cvert%20u_n%5Cvert)%5Cleq%20e%5E%7B%5Csum_%7Bn%3D1%7D%5E%5Cinfty%20%5Cvert%20u_n%5Cvert%7D

%5Csquare

(推論)設(shè)u_1(z)%2Cu_2(z)%2C%E2%80%A6為區(qū)域D的解析函數(shù)項(xiàng)序列,若

%5Csum_%7Bn%3D1%7D%5E%5Cinfty%20%5Cvert%20u_n(z)%5Cvert%20%EF%BC%9C%5Cinfty

%5Cprod_%7Bn%3D1%7D%5E%5Cinfty%5Cvert1%2Bu_n(z)%5Cvert%EF%BC%9C%5Cinfty

? 這是因?yàn)樵趨^(qū)域 D 內(nèi)它們都是有界的%5Csquare

設(shè)一復(fù)數(shù)序列%5Cvert%20a_1%5Cvert%5Cleq%5Cvert%20a_2%5Cvert%20%5Cleq%E2%80%A6%2C%5Clim_%7Bn%5Cto%5Cinfty%7D%5Cfrac1%7B%5Cvert%20a_n%5Cvert%7D%3D0,我們將要用這個(gè)序列構(gòu)造一個(gè)以且僅以他們?yōu)榱泓c(diǎn)的全純函數(shù),

首先,需要構(gòu)造一些能夠表述它零點(diǎn)的因式,對(duì)此給出一下定義:

E_0(z)%3D(1-z)%2C

E_k(z)%3D(1-z)e%5E%7Bz%2B%5Cfrac12z%5E2%2B%E2%80%A6%2B%5Cfrac1kz%5Ek%7D%2Cn%3D1%2C2%2C%E2%80%A6

稱它們?yōu)?strong>基本因式,下面就要用他們來做一些奇妙的事情

易知它們?cè)趶?fù)平面內(nèi)解析且僅以 z=1為零點(diǎn),設(shè)

F(z)%3Dz%5Em%5Cprod_%7Bn%3D1%7D%5E%5Cinfty%20E_k%5Cleft(%5Cfrac%20z%7Bz_n%7D%5Cright)

其中?m%3Dm(F(z)%3B0)?為?F(z)?在?z%3D0?處的零點(diǎn)階數(shù)(若?F(0)%E2%89%A00,則?m%3D0?)

我們猜測(cè)這是個(gè)整函數(shù)(整個(gè)復(fù)平面上都全純的函數(shù))且僅以z_1%2Cz_2%2C%E2%80%A6為零點(diǎn)(若?z_r?在當(dāng)中出現(xiàn)了m次,則?z_r?是?F(z)?的m重零點(diǎn))

若我們能證明%5Cprod_%7Bn%3Dr%7D%5E%5Cinfty%20E_k%5Cleft(%5Cfrac%20z%7Bz_n%7D%5Cright)%5Cvert%20z%5Cvert%20%5Cleq%5Cvert%20z_r%5Cvert內(nèi)一致收斂到整函數(shù),因%5Cvert%20z_r%5Cvert%5Crightarrow%5Cinfty,則證明我們的猜想是正確的,因此當(dāng)務(wù)之急是確定k,

(引理)當(dāng)?%5Cvert%20z%5Cvert%20%5Cleq1?時(shí),

%5Cvert%20E_k%5Cleft(z%5Cright)-1%5Cvert%5Cleq%20%5Cvert%20z%5Cvert%5E%7Bk%2B1%7D

證明 當(dāng)k=0時(shí),%5Cvert%201-(1-z)%5Cvert%5Cleq%5Cvert%20z%5Cvert成立,當(dāng)k≥1時(shí),

對(duì)E_k(z)取導(dǎo)數(shù),有

E_k'(z)%3Dz%5Eke%5E%7Bz%2B%5Cfrac12z%5E2%2B%E2%80%A6%2B%5Cfrac1kz%5Ek%7D

易知僅有z=0為其零點(diǎn)且重?cái)?shù)為k,又有

E_k(z)-1%3D%5Cint_0%5Ez%20E_k%E2%80%99(s)ds

對(duì)?E_k'(z)?積分使得它在z=0處的重?cái)?shù)加1,即?E_k(z)-1?在z=0處有k+1重零點(diǎn),因此

%5Cphi(z)%3A%3D%5Cfrac%7BE_k(z)-1%7D%7Bz%5E%7Bk%2B1%7D%7D

全純函數(shù),即

%5Cphi(z)%3D%5Csum_%7Bn%3D0%7D%5E%5Cinfty%20a_nz%5En

并且其中所有?a_n%5Cge1 ,因此對(duì)?%5Cvert%20z%5Cvert%5Cleq1,有?%7C%5Cphi(z)%7C%5Cle%5Cphi(1)%3D1?,即?

%7CE_k(z)-1%7C%5Cle%20%7Cz%5E%7Bk%2B1%7D%7C

%5Csquare

由上可知若正整數(shù)k使得

%5Csum_%7Bn%3Dr%7D%5E%5Cinfty%20%5Cfrac%7B%5Cvert%20z%5Cvert%5E%7Bk%2B1%7D%7D%7B%5Cvert%20z_n%5Cvert%5E%7Bk%2B1%7D%7D%3C%5Cinfty?在?%5Cvert%20z%5Cvert%5Cleq%5Cvert%20z_r%5Cvert內(nèi)成立,則

%5Csum_%7Bn%3Dr%7D%5E%5Cinfty%20%5Cleft%7C%20E_k%5Cleft(%5Cfrac%20z%7Bz_n%7D%5Cright)-1%5Cright%7C%5Cle%5Csum_%7Bn%3D1%7D%5E%5Cinfty%5Cleft%7C%5Cfrac%7Bz%7D%7Bz_n%7D%5Cright%7C%5E%7Bk%2B1%7D%3C%5Cinfty

由前面的引理,可知

%5Cprod_%7Bn%3Dr%7D%5E%5Cinfty%20%5Cleft%7C%20E_k%5Cleft(%5Cfrac%20z%7Bz_n%7D%5Cright)%5Cright%7C%3C%5Cinfty

因?yàn)?%5Cvert%20z_r%5Cvert%5Crightarrow%5Cinfty?,所以我們得到:若正整數(shù)k滿足

?%5Csum_%7Bn%3D1%7D%5E%5Cinfty%20%5Cfrac1%7B%5Cvert%20z_n%5Cvert%5E%7Bk%2B1%7D%7D%3C%5Cinfty


F(z)%3D%5Cprod_%7Bn%3D1%7D%5E%5Cinfty%20E_k%5Cleft(%5Cfrac%20z%7Bz_n%7D%5Cright)

定義了一個(gè)僅以?z_1%2Cz_2%2C%E2%80%A6?為零點(diǎn)的整函數(shù)

進(jìn)一步,可以得到:

(Weierstrass分解定理)設(shè)?F(z)?是整函數(shù),其零點(diǎn)為?z_1%2Cz_2%2C%E2%80%A6?,則它有一下無窮乘積展開:

F(z)%3De%5E%7BH(z)%7Dz%5Em%5Cprod_%7Bn%3D1%7D%5E%5Cinfty%20E_k%5Cleft(%5Cfrac%20z%7Bz_n%7D%5Cright)

其中 H(z) 是一整函數(shù),m是z=0處的零點(diǎn)重?cái)?shù)

? 因?yàn)?F(z)?是整函數(shù),所以存在整函數(shù)?G(z)?由一無窮乘積給定且以?F(z)?的零點(diǎn)為零點(diǎn),若

P(z)%3D%5Cfrac%7BF(z)%7D%7BG(z)%7D

因?yàn)?P(z)?的分子分母在在零點(diǎn)處可以相抵,所以?P(z)?是無零點(diǎn)的整函數(shù),即?P(z)?的對(duì)數(shù)是整函數(shù),也就是是存在整函數(shù) H(z) ,使

P(z)%3De%5E%7BH(z)%7D

所以?F(z)%3De%5E%7BH(z)%7DG(z)

%5Csquare

正弦函數(shù)的Weierstrass乘積分解

這個(gè)問題就是歐拉(Leonhard?Euler)的成名作:

%5Csum_%7Bn%3D1%7D%5E%5Cinfty%20%5Cfrac1%7Bn%5E2%7D%3D%5Cfrac%7B%5Cpi%5E2%7D6

前面我已經(jīng)用Poison求和公式給出了一個(gè)證明,今天來看一看歐拉的方法吧

他最開始給出了一個(gè)非常巧妙的證明,首先他注意到了

%5Csin%20x%3Dx-%5Cfrac1%7B3!%7Dx%5E3%2B%5Cfrac1%7B5!%7Dx%5E5-%E2%80%A6

為?%5Csin%20x?在零點(diǎn)的Taylor展開,

因?yàn)?%5Csin%20x?的零點(diǎn)為?0%2C%5Cpm%20%5Cpi%2C%5Cpm%202%5Cpi%2C%5Cpm%203%5Cpi%2C%E2%80%A6

于是

%5Csin%20x%3Dcx%5Cleft(1-%5Cfrac%20x%7B%5Cpi%7D%5Cright)%5Cleft(1%2B%5Cfrac%20x%7B%5Cpi%7D%5Cright)%5Cleft(1-%5Cfrac%20x%7B2%5Cpi%7D%5Cright)%5Cleft(1%2B%5Cfrac%20x%7B2%5Cpi%7D%5Cright)%5Cleft(1-%5Cfrac%20x%7B3%5Cpi%7D%5Cright)%5Cleft(1%2B%5Cfrac%20x%7B3%5Cpi%7D%5Cright)%E2%80%A6

? ? ? ? ? ?%3Dcx%5Cleft(1-%5Cfrac%20%7Bx%5E2%7D%7B%5Cpi%5E2%7D%5Cright)%5Cleft(1-%5Cfrac%20%7Bx%5E2%7D%7B4%5Cpi%5E2%7D%5Cright)%5Cleft(1-%5Cfrac%20%7Bx%5E2%7D%7B9%5Cpi%5E2%7D%5Cright)%E2%80%A6

將這個(gè)無窮乘積展開,根據(jù)?%5Csin%20x?的Taylor展開中的一次項(xiàng)系數(shù)可確定c=1,并且

%5Csin%20x%3Dx-%5Cleft(%5Cfrac1%7B%5Cpi%5E2%7D%2B%5Cfrac1%7B2%5E2%5Cpi%5E2%7D%2B%5Cfrac1%7B3%5E2%5Cpi%5E2%7D%2B%E2%80%A6%5Cright)x%5E3%2B%E2%80%A6

對(duì)比三次項(xiàng)系數(shù)可得

%5Cbegin%7Baligned%7D%5Cfrac1%7B%5Cpi%5E2%7D%2B%5Cfrac1%7B2%5E2%5Cpi%5E2%7D%2B%5Cfrac1%7B3%5E2%5Cpi%5E2%7D%2B%E2%80%A6%3D%5Cfrac1%7B3!%7D%5C%5C%5CRightarrow%201%2B%5Cfrac1%7B2%5E2%7D%2B%5Cfrac1%7B3%5E2%7D%2B%E2%80%A6%3D%5Cfrac%7B%5Cpi%5E2%7D6%5Cend%7Baligned%7D

這就是Euler的證明過程,優(yōu)雅且簡(jiǎn)潔,但實(shí)際上這個(gè)證明存在的一個(gè)問題就是Euler并沒有嚴(yán)格證明?%5Csin%20x?可以像那樣展開為無窮乘積

ps:其實(shí)歐拉給出過嚴(yán)謹(jǐn)?shù)淖C明,但由于這一個(gè)證明太出名了,導(dǎo)致一些人認(rèn)為他沒有給出嚴(yán)謹(jǐn)證明

考慮?%5Ccos%20zt%2Ct%5Cin%5B-%5Cpi%2C%5Cpi%5D?,對(duì) t 以周期為 2π 的Fourier級(jí)數(shù)展開,

%5Ccos%20zt%3D%5Cfrac%7Ba_0%7D2%2B%5Csum_%7Bn%3D1%7D%5E%5Cinfty%20a_n%5Ccos%20nt%2Bb_n%5Csin%20nt

之所以這樣展開,是因?yàn)楫?dāng)中的

b_n%3D%5Cfrac1%7B%5Cpi%7D%5Cint_%7B-%5Cpi%7D%5E%5Cpi%5Ccos%20zt%20%5Csin%20nt%20%5Cmathrm%20dt%3D0

即展開式中只有余弦函數(shù),并且以 2π 為周期展開也提供了許多方便

又通過高端的計(jì)(硬)算,可得

a_n%3D%5Cfrac1%5Cpi%5Cint_%7B-%5Cpi%7D%5E%5Cpi%5Ccos%20zt%5Ccos%20nt%5Cmathrm%20dt%3D(-1)%5En%5Cfrac%7B2z%7D%7Bz%5E2-n%5E2%7D%5Ccdot%5Cfrac%7B%5Csin%5Cpi%20z%7D%7B%5Cpi%7D

則有:

%5Ccos%20zt%3D%5Cfrac%7B1%7D%7Bz%7D%5Ccdot%5Cfrac%7B%5Csin%5Cpi%20z%7D%7B%5Cpi%7D%2B%5Csum_%7Bn%3D1%7D%5E%5Cinfty%20(-1)%5En%5Cfrac%7B2z%7D%7Bz%5E2-n%5E2%7D%5Ccdot%5Cfrac%7B%5Csin%5Cpi%20z%7D%7B%5Cpi%7D%5Ccos%20nt

現(xiàn)在令 t=π ,可得

%5Ccos%20%5Cpi%20z%3D%5Cfrac%7B1%7D%7Bz%7D%5Ccdot%5Cfrac%7B%5Csin%5Cpi%20z%7D%7B%5Cpi%7D%2B%5Csum_%7Bn%3D1%7D%5E%5Cinfty%5Cfrac%7B2z%7D%7Bz%5E2-n%5E2%7D%5Ccdot%5Cfrac%7B%5Csin%5Cpi%20z%7D%7B%5Cpi%7D

%5CRightarrow%20%5Ccot%20%5Cpi%20z%3D%5Cfrac1%7B%5Cpi%20z%7D%2B%5Cfrac1%5Cpi%5Csum_%7Bn%3D1%7D%5E%5Cinfty%20%5Cfrac%7B2z%7D%7Bz%5E2-n%5E2%7D

根據(jù)上面的定理,由于?%5Csin%20z?是整函數(shù),因此它可以由Weierstrass分解定理展開,但是為了方便,我們展開一下乘積:

%5Csin%20%5Cpi%20z%3De%5E%7BH(z)%7Dz%5Cprod_%7Bn%3D1%7D%5E%5Cinfty%5Cleft(1-%5Cfrac%20%7Bz%7D%7Bn%7D%5Cright)e%5E%7Bz%2Fn%7D%5Cleft(1%2B%5Cfrac%20%7Bz%7D%7Bn%7D%5Cright)e%5E%7B-z%2Fn%7D

%5CRightarrow%5Csin%20%5Cpi%20z%3De%5E%7BH(z)%7Dz%5Cprod_%7Bn%3D1%7D%5E%5Cinfty%5Cleft(1-%5Cfrac%20%7Bz%5E2%7D%7Bn%5E2%7D%5Cright)

取對(duì)數(shù)導(dǎo)數(shù),可得:

H'(z)%3D%5Cpi%5Ccot%20z-%5Cpi%5Ccolor%7Bblue%7D%7B%5Cleft(%5Cfrac1%7B%5Cpi%20z%7D%2B%5Cfrac1%5Cpi%5Csum_%7Bn%3D1%7D%5E%5Cinfty%20%5Cfrac%7B2z%7D%7Bz%5E2-n%5E2%7D%5Cright)%7D

注意到藍(lán)色部分就是余切函數(shù),因此?H'(z)%3D0?,即這是個(gè)常函數(shù)

令?z%5Crightarrow%200?,可得

e%5E%7BH(z)%7D%3D%5Clim_%7Bz%5Cto0%7D%5Cfrac%7B%5Csin%20%5Cpi%20z%7D%7Bz%7D%3D%5Cpi

所以

%5Csin%20%5Cpi%20z%3D%5Cpi%20z%5Cprod_%7Bn%3D1%7D%5E%5Cinfty%5Cleft(1-%5Cfrac%20%7Bz%5E2%7D%7Bn%5E2%7D%5Cright)

最后經(jīng)過簡(jiǎn)單的代換就能得到歐拉所展開的乘積了

無窮乘積——Weierstrass分解定理的評(píng)論 (共 條)

分享到微博請(qǐng)遵守國(guó)家法律
清涧县| 达孜县| 雅安市| 昆明市| 长海县| 瓦房店市| 泗阳县| 南溪县| 安西县| 广饶县| 冷水江市| 和龙市| 都匀市| 永城市| 安远县| 云浮市| 天等县| 尉犁县| 建宁县| 宁波市| 巩留县| 察雅县| 深泽县| 高邑县| 新安县| 舒兰市| 原平市| 炉霍县| 合阳县| 津市市| 琼结县| 喀喇沁旗| 舞钢市| 城口县| 鹤峰县| 太仆寺旗| 宣威市| 云阳县| 丰都县| 西丰县| 当涂县|