最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網(wǎng) 會(huì)員登陸 & 注冊(cè)

[Combinatorics] Indian Combinatorics

2021-11-02 10:18 作者:AoiSTZ23  | 我要投稿

By: Tao Steven Zheng (鄭濤)

【Problem】

Problem 1: Lord Shiva (Bhaskara's ''Lilavati'', c. 1150 AD)

The God Shiva had ten items (one item in each hand): the rope, the hook, the snake, the drum, the skull, the trident, the bedstead, the dagger, the arrow, and the bow. How many different ways can these items be exchanged?

Problem 2: Six Flavour (Mahavira's ''Ganita-Sara-Sangraha'', c. 850 AD)

There are six flavours: astringent, bitter, sour, spicy, salty, and sweet. In how many ways can different flavours be used in combination?

【Solution】

Problem 1: Lord Shiva (Bhaskara's ''Lilavati'', c. 1150 AD)

This is a permutation problem. The number of possible arrangements of Shiva’s items is 10%5Ctimes%209%5Ctimes%208%5Ctimes%207%5Ctimes%206%5Ctimes%205%5Ctimes%204%5Ctimes%203%5Ctimes%202%5Ctimes%201%20%3D%203628800. This is more compactly written using the factorial symbol

10!%20%3D%203628800


Problem 2: Six Flavour (Mahavira's ''Ganita-Sara-Sangraha'', c. 850 AD)

This problem is the sum of combinations

%7BC%7D%5E%7B6%7D_%7B0%7D%20%2B%20%7BC%7D%5E%7B6%7D_%7B1%7D%20%2B%20%7BC%7D%5E%7B6%7D_%7B2%7D%20%2B%20%7BC%7D%5E%7B6%7D_%7B3%7D%20%2B%20%7BC%7D%5E%7B6%7D_%7B4%7D%20%2B%20%7BC%7D%5E%7B6%7D_%7B5%7D%20%2B%20%7BC%7D%5E%7B6%7D_%7B6%7D

where

%7BC%7D%5E%7Bn%7D_%7Br%7D%20%3D%20%5Cfrac%7Bn!%7D%7Br!(n-r)!%7D

%7BC%7D%5E%7B6%7D_%7B0%7D%20%2B%20%7BC%7D%5E%7B6%7D_%7B1%7D%20%2B%20%7BC%7D%5E%7B6%7D_%7B2%7D%20%2B%20%7BC%7D%5E%7B6%7D_%7B3%7D%20%2B%20%7BC%7D%5E%7B6%7D_%7B4%7D%20%2B%20%7BC%7D%5E%7B6%7D_%7B5%7D%20%2B%20%7BC%7D%5E%7B6%7D_%7B6%7D%20%3D%201%20%2B%206%20%2B%2015%20%2B%2020%20%2B%2015%20%2B%206%20%2B%201%20

%7BC%7D%5E%7B0%7D_%7B6%7D%20%2B%20%7BC%7D%5E%7B1%7D_%7B6%7D%20%2B%20%7BC%7D%5E%7B2%7D_%7B6%7D%20%2B%20%7BC%7D%5E%7B3%7D_%7B6%7D%20%2B%20%7BC%7D%5E%7B4%7D_%7B6%7D%20%2B%20%7BC%7D%5E%7B5%7D_%7B6%7D%20%2B%20%7BC%7D%5E%7B6%7D_%7B6%7D%20%20%3D%2064

Shortcut
There is a known property of combinations

%5Csum_%7Br%3D0%7D%5E%7Bn%7D%20%7BC%7D_%7Br%7D%5E%7Bn%7D%20%3D%202%5En

Using this property gives

%20%5Csum_%7Br%3D0%7D%5E%7B6%7D%20%7BC%7D_%7Br%7D%5E%7B6%7D%20%3D%202%5E6%20

%20%5Csum_%7Br%3D0%7D%5E%7B6%7D%20%7BC%7D_%7Br%7D%5E%7B6%7D%20%3D%2064%20


[Combinatorics] Indian Combinatorics的評(píng)論 (共 條)

分享到微博請(qǐng)遵守國(guó)家法律
内黄县| 洪泽县| 衡山县| 宝鸡市| 乌海市| 互助| 菏泽市| 罗山县| 绩溪县| 广州市| 都匀市| 华宁县| 江北区| 中方县| 宜兰县| 伊吾县| 阜康市| 城固县| 海晏县| 泸西县| 奉节县| 唐河县| 石台县| 绵竹市| 安仁县| 聊城市| 新民市| 元朗区| 浦县| 嘉定区| 桦南县| 安徽省| 大余县| 日照市| 桃园县| 汾西县| 沛县| 珲春市| 邹平县| 新田县| 木里|