最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網(wǎng) 會(huì)員登陸 & 注冊(cè)

量子場(chǎng)論(十二):洛倫茲群的矢量表示

2022-12-30 22:41 作者:我的世界-華汁  | 我要投稿

洛倫茲變換的無(wú)窮小參數(shù)%7B%5Comega%5E%5Calpha%7D_%5Cbeta可以轉(zhuǎn)化為:

%5Cbegin%7Balign%7D%7B%5Comega%5E%5Calpha%7D_%5Cbeta%26%3Dg%5E%7B%5Calpha%5Cmu%7D%5Comega_%7B%5Cmu%5Cbeta%7D%3D%5Cfrac12(g%5E%7B%5Calpha%5Cmu%7D%5Comega_%7B%5Cmu%5Cbeta%7D-g%5E%7B%5Calpha%5Cmu%7D%5Comega_%7B%5Cbeta%5Cmu%7D)%3D%5Cfrac12(g%5E%7B%5Calpha%5Cmu%7D%5Comega_%7B%5Cmu%5Cnu%7D%7B%5Cdelta%5E%5Cnu%7D_%5Cbeta-g%5E%7B%5Calpha%5Cmu%7D%5Comega_%7B%5Cnu%5Cmu%7D%7B%5Cdelta%5E%5Cnu%7D_%5Cbeta)%5C%5C%26%3D%5Cfrac12(g%5E%7B%5Calpha%5Cmu%7D%5Comega_%7B%5Cmu%5Cnu%7D%7B%5Cdelta%5E%5Cnu%7D_%5Cbeta-g%5E%7B%5Calpha%5Cnu%7D%5Comega_%7B%5Cmu%5Cnu%7D%7B%5Cdelta%5E%5Cmu%7D_%5Cbeta)%3D-%5Cfrac%20i2%5Comega_%7B%5Cmu%5Cnu%7Di(g%5E%7B%5Cmu%5Calpha%7D%7B%5Cdelta%5E%5Cnu%7D_%5Cbeta-g%5E%7B%5Cnu%5Calpha%7D%7B%5Cdelta%5E%5Cmu%7D_%5Cbeta)%3D-%5Cfrac%20i2%5Comega_%7B%5Cmu%5Cnu%7D%7B(%5Cmathcal%20J%5E%7B%5Cmu%5Cnu%7D)%5E%5Calpha%7D_%5Cbeta.%5Cend%7Balign%7D%5Ctag%7B12.1%7D

其中%7B(%5Cmathcal%20J%5E%7B%5Cmu%5Cnu%7D)%5E%5Calpha%7D_%5Cbeta定義為:

%7B(%5Cmathcal%20J%5E%7B%5Cmu%5Cnu%7D)%5E%5Calpha%7D_%5Cbeta%5Cequiv%20i(g%5E%7B%5Cmu%5Calpha%7D%7B%5Cdelta%5E%5Cnu%7D_%5Cbeta-g%5E%7B%5Cnu%5Calpha%7D%7B%5Cdelta%5E%5Cmu%7D_%5Cbeta).%5Ctag%7B12.2%7D

容易看出,它是反對(duì)稱的:

%5Cmathcal%20J%5E%7B%5Cmu%5Cnu%7D%3D-%5Cmathcal%20J%5E%7B%5Cnu%5Cmu%7D.%5Ctag%7B12.3%7D

它的另一種寫法是:

(%5Cmathcal%20J%5E%7B%5Cmu%5Cnu%7D)_%7B%5Calpha%5Cbeta%7D%3Dg_%7B%5Calpha%5Cgamma%7D%7B(%5Cmathcal%20J%5E%7B%5Cmu%5Cnu%7D)%5E%5Cgamma%7D_%5Cbeta%3Dig_%7B%5Calpha%5Cgamma%7D(g%5E%7B%5Cmu%5Cgamma%7D%7B%5Cdelta%5E%5Cnu%7D_%5Cbeta-g%5E%7B%5Cnu%5Cgamma%7D%7B%5Cdelta%5E%5Cmu%7D_%5Cbeta)%3Di(%7B%5Cdelta%5E%5Cmu%7D_%5Calpha%7B%5Cdelta%5E%5Cnu%7D_%5Cbeta-%7B%5Cdelta%5E%5Cnu%7D_%5Calpha%7B%5Cdelta%5E%5Cmu%7D_%5Cbeta).%5Ctag%7B12.4%7D

這樣的話,無(wú)窮小洛倫茲變換就是:

%7B(%5CLambda_%5Comega)%5E%5Calpha%7D_%5Cbeta%3D%7B%5Cdelta%5E%5Calpha%7D_%5Cbeta%2B%7B%5Comega%5E%5Calpha%7D_%5Cbeta%3D%7B%5Cdelta%5E%5Calpha%7D_%5Cbeta-%5Cfrac%20i2%5Comega_%7B%5Cmu%5Cnu%7D%7B(%5Cmathcal%20J%5E%7B%5Cmu%5Cnu%7D)%5E%5Calpha%7D_%5Cbeta.%5Ctag%7B12.5%7D

%5Cmathcal%20J%5E%7B%5Cmu%5Cnu%7D%5Cmathcal%20J%5E%7B%5Crho%5Csigma%7D的對(duì)易關(guān)系為:

%5Cbegin%7Balign%7D%7B%5B%5Cmathcal%20J%5E%7B%5Cmu%5Cnu%7D%2C%5Cmathcal%20J%5E%7B%5Crho%5Csigma%7D%5D%5E%5Calpha%7D_%5Cbeta%26%3D%7B(%5Cmathcal%20J%5E%7B%5Cmu%5Cnu%7D)%5E%5Calpha%7D_%5Cgamma%7B(%5Cmathcal%20J%5E%7B%5Crho%5Csigma%7D)%5E%5Cgamma%7D_%5Cbeta-%7B(%5Cmathcal%20J%5E%7B%5Crho%5Csigma%7D)%5E%5Calpha%7D_%5Cgamma%7B(%5Cmathcal%20J%5E%7B%5Cmu%5Cnu%7D)%5E%5Cgamma%7D_%5Cbeta%5C%5C%26%3Di%5E2%5B(g%5E%7B%5Cmu%5Calpha%7D%7B%5Cdelta%5E%5Cnu%7D_%5Cgamma-g%5E%7B%5Cnu%5Calpha%7D%7B%5Cdelta%5E%5Cmu%7D_%5Cgamma)(g%5E%7B%5Crho%5Cgamma%7D%7B%5Cdelta%5E%5Csigma%7D_%5Cbeta-g%5E%7B%5Csigma%5Cgamma%7D%7B%5Cdelta%5E%5Crho%7D_%5Cbeta)-(g%5E%7B%5Crho%5Calpha%7D%7B%5Cdelta%5E%5Csigma%7D_%5Cgamma-g%5E%7B%5Csigma%5Calpha%7D%7B%5Cdelta%5E%5Crho%7D_%5Cgamma)(g%5E%7B%5Cmu%5Cgamma%7D%7B%5Cdelta%5E%5Cnu%7D_%5Cbeta-g%5E%7B%5Cnu%5Cgamma%7D%7B%5Cdelta%5E%5Cmu%7D_%5Cbeta)%5D%5C%5C%26%3D-g%5E%7B%5Cmu%5Calpha%7D%7B%5Cdelta%5E%5Cnu%7D_%5Cgamma%20g%5E%7B%5Crho%5Cgamma%7D%7B%5Cdelta%5E%5Csigma%7D_%5Cbeta%2Bg%5E%7B%5Cmu%5Calpha%7D%7B%5Cdelta%5E%5Cnu%7D_%5Cgamma%20g%5E%7B%5Csigma%5Cgamma%7D%7B%5Cdelta%5E%5Crho%7D_%5Cbeta%2Bg%5E%7B%5Cnu%5Calpha%7D%7B%5Cdelta%5E%5Cmu%7D_%5Cgamma%20g%5E%7B%5Crho%5Cgamma%7D%7B%5Cdelta%5E%5Csigma%7D_%5Cbeta-g%5E%7B%5Cnu%5Calpha%7D%7B%5Cdelta%5E%5Cmu%7D_%5Cgamma%20g%5E%7B%5Csigma%5Cgamma%7D%7B%5Cdelta%5E%5Crho%7D_%5Cbeta%2Bg%5E%7B%5Crho%5Calpha%7D%7B%5Cdelta%5E%5Csigma%7D_%5Cgamma%20g%5E%7B%5Cmu%5Cgamma%7D%7B%5Cdelta%5E%5Cnu%7D_%5Cbeta-g%5E%7B%5Crho%5Calpha%7D%7B%5Cdelta%5E%5Csigma%7D_%5Cgamma%20g%5E%7B%5Cnu%5Cgamma%7D%7B%5Cdelta%5E%5Cmu%7D_%5Cbeta-g%5E%7B%5Csigma%5Calpha%7D%7B%5Cdelta%5E%5Crho%7D_%5Cgamma%20g%5E%7B%5Cmu%5Cgamma%7D%7B%5Cdelta%5E%5Cnu%7D_%5Cbeta%2Bg%5E%7B%5Csigma%5Calpha%7D%7B%5Cdelta%5E%5Crho%7D_%5Cgamma%20g%5E%7B%5Cnu%5Cgamma%7D%7B%5Cdelta%5E%5Cmu%7D_%5Cbeta%5C%5C%26%3D-g%5E%7B%5Cmu%5Calpha%7Dg%5E%7B%5Crho%5Cnu%7D%7B%5Cdelta%5E%5Csigma%7D_%5Cbeta%2Bg%5E%7B%5Cmu%5Calpha%7Dg%5E%7B%5Csigma%5Cnu%7D%7B%5Cdelta%5E%5Crho%7D_%5Cbeta%2Bg%5E%7B%5Cnu%5Calpha%7Dg%5E%7B%5Crho%5Cmu%7D%7B%5Cdelta%5E%5Csigma%7D_%5Cbeta-g%5E%7B%5Cnu%5Calpha%7Dg%5E%7B%5Csigma%5Cmu%7D%7B%5Cdelta%5E%5Crho%7D_%5Cbeta%2Bg%5E%7B%5Crho%5Calpha%7Dg%5E%7B%5Cmu%5Csigma%7D%7B%5Cdelta%5E%5Cnu%7D_%5Cbeta-g%5E%7B%5Crho%5Calpha%7Dg%5E%7B%5Cnu%5Csigma%7D%7B%5Cdelta%5E%5Cmu%7D_%5Cbeta-g%5E%7B%5Csigma%5Calpha%7Dg%5E%7B%5Cmu%5Crho%7D%7B%5Cdelta%5E%5Cnu%7D_%5Cbeta%2Bg%5E%7B%5Csigma%5Calpha%7Dg%5E%7B%5Cnu%5Crho%7D%7B%5Cdelta%5E%5Cmu%7D_%5Cbeta%5C%5C%26%3Dg%5E%7B%5Cnu%5Crho%7D(g%5E%7B%5Csigma%5Calpha%7D%7B%5Cdelta%5E%5Cmu%7D_%5Cbeta-g%5E%7B%5Cmu%5Calpha%7D%7B%5Cdelta%5E%5Csigma%7D_%5Cbeta)%2Bg%5E%7B%5Cmu%5Crho%7D(g%5E%7B%5Cnu%5Calpha%7D%7B%5Cdelta%5E%5Csigma%7D_%5Cbeta-g%5E%7B%5Csigma%5Calpha%7D%7B%5Cdelta%5E%5Cnu%7D_%5Cbeta)%2Bg%5E%7B%5Cnu%5Csigma%7D(g%5E%7B%5Cmu%5Calpha%7D%7B%5Cdelta%5E%5Crho%7D_%5Cbeta-g%5E%7B%5Crho%5Calpha%7D%7B%5Cdelta%5E%5Cmu%7D_%5Cbeta)%2Bg%5E%7B%5Cmu%5Csigma%7D(g%5E%7B%5Crho%5Calpha%7D%7B%5Cdelta%5E%5Cnu%7D_%5Cbeta-g%5E%7B%5Cnu%5Calpha%7D%7B%5Cdelta%5E%5Crho%7D_%5Cbeta)%5C%5C%26%3D-ig%5E%7B%5Cnu%5Crho%7D%7B(%5Cmathcal%20J%5E%7B%5Csigma%5Cmu%7D)%5E%5Calpha%7D_%5Cbeta-ig%5E%7B%5Cmu%5Crho%7D%7B(%5Cmathcal%20J%5E%7B%5Cnu%5Csigma%7D)%5E%5Calpha%7D_%5Cbeta-ig%5E%7B%5Cnu%5Csigma%7D%7B(%5Cmathcal%20J%5E%7B%5Cmu%5Crho%7D)%5E%5Calpha%7D_%5Cbeta-ig%5E%7B%5Cmu%5Csigma%7D%7B(%5Cmathcal%20J%5E%7B%5Crho%5Cnu%7D)%5E%5Calpha%7D_%5Cbeta%5C%5C%26%3Di%5Bg%5E%7B%5Cnu%5Crho%7D%7B(%5Cmathcal%20J%5E%7B%5Cmu%5Csigma%7D)%5E%5Calpha%7D_%5Cbeta-g%5E%7B%5Cmu%5Crho%7D%7B(%5Cmathcal%20J%5E%7B%5Cnu%5Csigma%7D)%5E%5Calpha%7D_%5Cbeta-g%5E%7B%5Cnu%5Csigma%7D%7B(%5Cmathcal%20J%5E%7B%5Cmu%5Crho%7D)%5E%5Calpha%7D_%5Cbeta%2Bg%5E%7B%5Cmu%5Csigma%7D%7B(%5Cmathcal%20J%5E%7B%5Cnu%5Crho%7D)%5E%5Calpha%7D_%5Cbeta%5D.%5Cend%7Balign%7D%5Ctag%7B12.6%7D

即:

%5B%5Cmathcal%20J%5E%7B%5Cmu%5Cnu%7D%2C%5Cmathcal%20J%5E%7B%5Crho%5Csigma%7D%5D%3Di(g%5E%7B%5Cnu%5Crho%7D%5Cmathcal%20J%5E%7B%5Cmu%5Csigma%7D-g%5E%7B%5Cmu%5Crho%7D%5Cmathcal%20J%5E%7B%5Cnu%5Csigma%7D-g%5E%7B%5Cnu%5Csigma%7D%5Cmathcal%20J%5E%7B%5Cmu%5Crho%7D%2Bg%5E%7B%5Cnu%5Crho%7D%5Cmathcal%20J%5E%7B%5Cmu%5Csigma%7D-g%5E%7B%5Cnu%5Csigma%7D%5Cmathcal%20J%5E%7B%5Cmu%5Crho%7D).%5Ctag%7B12.7%7D

可見,%5Cmathcal%20J%5E%7B%5Cmu%5Cnu%7D滿足洛倫茲代數(shù)關(guān)系,%7B%5CLambda%5E%5Calpha%7D_%5Cbeta是洛倫茲群的四維矢量表示。因而%5Cmathcal%20J%5E%7B%5Cmu%5Cnu%7D就是矢量表示的生成元矩陣,作用的對(duì)象是洛倫茲矢量。

無(wú)窮小洛倫茲變換的矩陣記法為:

%5CLambda_%5Comega%3D%5Cmathbf1%2B%5Comega%3D%5Cmathbf1-%5Cfrac%20i2%5Comega_%7B%5Cmu%5Cnu%7D%5Cmathcal%20J%5E%7B%5Cmu%5Cnu%7D.%5Ctag%7B12.8%7D

它可以看作矩陣級(jí)數(shù):

%5CLambda%3De%5E%7B-%5Cfrac%20i2%5Comega_%7B%5Cmu%5Cnu%7D%5Cmathcal%20J%5E%7B%5Cmu%5Cnu%7D%7D%3De%5E%5Comega%3D%5Csum%5E%5Cinfty_%7Bn%3D0%7D%5Cfrac%7B%5Comega%5En%7D%7Bn!%7D%5Ctag%7B12.9%7D

展開到一階項(xiàng)的結(jié)果。矩陣%5Comega與度規(guī)矩陣%5Cmathbf%20g滿足:

%7B(%5Cmathbf%20g%5E%7B-1%7D%5Comega%5E%7B%5Cmathrm%20T%7D%5Cmathbf%20g)%5E%5Calpha%7D_%5Cbeta%3Dg%5E%7B%5Calpha%5Cgamma%7D%7B(%7B%5Comega%5E%7B%5Cmathrm%20T%7D%7D)_%5Cgamma%7D%5E%5Cdelta%20g_%7B%5Cdelta%5Cbeta%7D%3Dg%5E%7B%5Calpha%5Cgamma%7D%7B%7B%5Comega%7D%5E%5Cdelta%7D_%5Cgamma%20g_%7B%5Cdelta%5Cbeta%7D%3Dg%5E%7B%5Calpha%5Cgamma%7D%5Comega_%7B%5Cbeta%5Cgamma%7D%3D-g%5E%7B%5Calpha%5Cgamma%7D%5Comega_%7B%5Cgamma%5Cbeta%7D%3D-%7B%5Comega%5E%5Calpha%7D_%5Cbeta.%5Ctag%7B12.10%7D

即:

%5Cmathbf%20g%5E%7B-1%7D%5Comega%5E%7B%5Cmathrm%20T%7D%5Cmathbf%20g%3D-%5Comega.%5Ctag%7B12.11%7D

從而:

%5Cmathbf%20g%5E%7B-1%7D%5CLambda%5E%7B%5Cmathrm%20T%7D%5Cmathbf%20g%3D%5Cmathbf%20g%5E%7B-1%7D%5B%5Csum%5E%5Cinfty_%7Bn%3D0%7D%5Cfrac%7B(%5Comega%5E%7B%5Cmathrm%20T%7D)%5En%7D%7Bn!%7D%5D%5Cmathbf%20g%3D%5Csum%5E%5Cinfty_%7Bn%3D0%7D%5Cfrac%7B(%5Cmathbf%20g%5E%7B-1%7D%5Comega%5E%7B%5Cmathrm%20T%7D%5Cmathbf%20g)%5En%7D%7Bn!%7D%3De%5E%7B%5Cmathbf%20g%5E%7B-1%7D%5Comega%5E%7B%5Cmathrm%20T%7D%5Cmathbf%20g%7D%3De%5E%7B-%5Comega%7D.%5Ctag%7B12.12%7D

若兩個(gè)同階方陣互相對(duì)易,即%5BA%2CB%5D%3D0,那么二項(xiàng)式定理是成立的:

(A%2BB)%5En%3D%5Csum_%7Bj%3D0%7D%5En%20C%5Ej_n%20A%5EjB%5E%7Bn-j%7D.%5Ctag%7B12.13%7D

把階乘推廣到負(fù)整數(shù),對(duì)于整數(shù)m%3C0,定義:

m!%5Crightarrow%5Cinfty%5C%20%2C%5C%20%5Cfrac1%7Bm!%7D%5Crightarrow0.%5Ctag%7B12.14%7D

從而,對(duì)于j%3En,有%5Cfrac1%7B(n-j)!%7D%5Crightarrow0。這樣一來(lái),可以把(12.13)右邊的級(jí)數(shù)化為無(wú)窮級(jí)數(shù):

(A%2BB)%5En%3D%5Csum_%7Bj%3D0%7D%5E%5Cinfty%20C%5Ej_nA%5EjB%5E%7Bn-j%7D.%5Ctag%7B12.15%7D

由此推出:

e%5E%7BA%2BB%7D%3D%5Csum_%7Bn%3D0%7D%5E%5Cinfty%5Cfrac1%7Bn!%7D(A%2BB)%5En%3D%5Csum_%7Bn%3D0%7D%5E%5Cinfty%5Cfrac1%7Bn!%7D%5Csum_%7Bj%3D0%7D%5E%5Cinfty%5Cfrac%7Bn!%7D%7Bj!(n-j)!%7DA%5EjB%5E%7Bn-j%7D%3D%5Csum_%7Bj%3D0%7D%5E%5Cinfty%5Cfrac%7BA%5Ej%7D%7Bj!%7D%5Cbigg%5B%5Csum_%7Bn%3D0%7D%5E%5Cinfty%5Cfrac%7BB%5E%7Bn-j%7D%7D%7B(n-j)!%7D%5Cbigg%5D%3De%5EAe%5EB.%5Ctag%7B12.16%7D

上式對(duì)對(duì)易的算符也成立。

由于%5B-%5Comega%2C%5Comega%5D%3D0,根據(jù)(12.12)與(12.16),有:

%5Cmathbf%20g%5E%7B-1%7D%5CLambda%5E%7B%5Cmathrm%20T%7D%5Cmathbf%20g%5CLambda%3De%5E%7B-%5Comega%7De%5E%5Comega%3De%5E%7B%5Cmathbf0%7D%3D%5Cmathbf1.%5Ctag%7B12.17%7D

%5CLambda%5E%7B%5Cmathrm%20T%7D%5Cmathbf%20g%5CLambda%3D%5Cmathbf%20g,即由(12.9)定義的%5CLambda滿足保度規(guī)條件,確實(shí)是洛倫茲變換。此時(shí),變換參數(shù)%5Comega_%7B%5Cmu%5Cnu%7D可以不是無(wú)窮小,而是一個(gè)有限值,所以,

%5CLambda%3De%5E%7B-%5Cfrac%20i2%5Comega_%7B%5Cmu%5Cnu%7D%5Cmathcal%20J%5E%7B%5Cmu%5Cnu%7D%7D%5Ctag%7B12.18%7D

是用洛倫茲群矢量表示生成元%5Cmathcal%20J%5E%7B%5Cmu%5Cnu%7D表達(dá)出來(lái)的有限變換。由于變換參數(shù)%5Comega_%7B%5Cmu%5Cnu%7D可以連續(xù)地變化到%5Comega_%7B%5Cmu%5Cnu%7D%3D0,用(12.18)式表達(dá)的洛倫茲變換在群空間中與恒等變換相連通,因而它屬于固有保時(shí)向洛倫茲群。當(dāng)%5Comega_%7B%5Cmu%5Cnu%7D遍歷群空間中所有參數(shù)取值時(shí),洛倫茲變換(12.18)遍歷所有的固有保時(shí)向洛倫茲群元素。

量子場(chǎng)論(十二):洛倫茲群的矢量表示的評(píng)論 (共 條)

分享到微博請(qǐng)遵守國(guó)家法律
固原市| 巴彦淖尔市| 石阡县| 额敏县| 静乐县| 友谊县| 玉田县| 清徐县| 深泽县| 宕昌县| 儋州市| 昔阳县| 延边| 德格县| 会同县| 龙南县| 和龙市| 江阴市| 文安县| 贵德县| 梅州市| 乌拉特前旗| 斗六市| 蒲江县| 桦南县| 高陵县| 吉水县| 疏附县| 含山县| 永善县| 浦江县| 金昌市| 龙游县| 兴国县| 原阳县| 苗栗市| 卢湾区| 罗田县| 西充县| 泌阳县| 苍山县|