兩個(gè)好用到爆的 Python 模塊,建議收藏!
在日常開發(fā)工作中,經(jīng)常會(huì)遇到這樣的一個(gè)問題:要對(duì)數(shù)據(jù)中的某個(gè)字段進(jìn)行匹配,但這個(gè)字段有可能會(huì)有微小的差異。比如同樣是招聘崗位的數(shù)據(jù),里面省份一欄有的寫“廣西”,有的寫“廣西壯族自治區(qū)”,甚至還有寫“廣西省”……為此不得不增加許多代碼來處理這些情況。
今天跟大家分享FuzzyWuzzy
一個(gè)簡(jiǎn)單易用的模糊字符串匹配工具包。讓你輕松解決煩惱的匹配問題!
前言
在處理數(shù)據(jù)的過程中,難免會(huì)遇到下面類似的場(chǎng)景,自己手里頭獲得的是簡(jiǎn)化版的數(shù)據(jù)字段,但是要比對(duì)的或者要合并的卻是完整版的數(shù)據(jù)(有時(shí)候也會(huì)反過來)
最常見的一個(gè)例子就是:在進(jìn)行地理可視化中,自己收集的數(shù)據(jù)只保留的縮寫,比如北京,廣西,新疆,西藏等,但是待匹配的字段數(shù)據(jù)卻是北京市,廣西壯族自治區(qū),新疆維吾爾自治區(qū),西藏自治區(qū)等,如下。因此就需要有沒有一種方式可以很快速便捷的直接進(jìn)行對(duì)應(yīng)字段的匹配并將結(jié)果單獨(dú)生成一列,就可以用到FuzzyWuzzy
庫(kù)。

FuzzyWuzzy庫(kù)介紹
FuzzyWuzzy
?是一個(gè)簡(jiǎn)單易用的模糊字符串匹配工具包。它依據(jù)?Levenshtein Distance
?算法,計(jì)算兩個(gè)序列之間的差異。
Levenshtein Distance
?算法,又叫?Edit Distance
?算法,是指兩個(gè)字符串之間,由一個(gè)轉(zhuǎn)成另一個(gè)所需的最少編輯操作次數(shù)。許可的編輯操作包括將一個(gè)字符替換成另一個(gè)字符,插入一個(gè)字符,刪除一個(gè)字符。一般來說,編輯距離越小,兩個(gè)串的相似度越大。
這里使用的是Anaconda
下的jupyter notebook
編程環(huán)境,因此在Anaconda
的命令行中輸入一下指令進(jìn)行第三方庫(kù)安裝。
1 fuzz模塊
該模塊下主要介紹四個(gè)函數(shù)(方法),分別為:簡(jiǎn)單匹配(Ratio)、非完全匹配(Partial Ratio)、忽略順序匹配(Token Sort Ratio)和去重子集匹配(Token Set Ratio)
注意:如果直接導(dǎo)入這個(gè)模塊的話,系統(tǒng)會(huì)提示warning
,當(dāng)然這不代表報(bào)錯(cuò),程序依舊可以運(yùn)行(使用的默認(rèn)算法,執(zhí)行速度較慢),可以按照系統(tǒng)的提示安裝python-Levenshtein
庫(kù)進(jìn)行輔助,這有利于提高計(jì)算的速度。

1.1 簡(jiǎn)單匹配(Ratio)
簡(jiǎn)單的了解一下就行,這個(gè)不怎么精確,也不常用
1.2 非完全匹配(Partial Ratio)
盡量使用非完全匹配,精度較高
1.3 忽略順序匹配(Token Sort Ratio)
原理在于:以 空格 為分隔符,小寫 化所有字母,無視空格外的其它標(biāo)點(diǎn)符號(hào)
1.4 去重子集匹配(Token Set Ratio)
相當(dāng)于比對(duì)之前有一個(gè)集合去重的過程,注意最后兩個(gè),可理解為該方法是在token_sort_ratio
方法的基礎(chǔ)上添加了集合去重的功能,下面三個(gè)匹配的都是倒序
fuzz
這幾個(gè)ratio()
函數(shù)(方法)最后得到的結(jié)果都是數(shù)字,如果需要獲得匹配度最高的字符串結(jié)果,還需要依舊自己的數(shù)據(jù)類型選擇不同的函數(shù),然后再進(jìn)行結(jié)果提取,如果但看文本數(shù)據(jù)的匹配程度使用這種方式是可以量化的,但是對(duì)于我們要提取匹配的結(jié)果來說就不是很方便了,因此就有了process
模塊。
process模塊
用于處理備選答案有限的情況,返回模糊匹配的字符串和相似度。
2.1 extract提取多條數(shù)據(jù)
類似于爬蟲中select
,返回的是列表,其中會(huì)包含很多匹配的數(shù)據(jù)
extract
之后的數(shù)據(jù)類型是列表,即使limit=1
,最后還是列表,注意和下面extractOne
的區(qū)別
2.2?extractOne提取一條數(shù)據(jù)
如果要提取匹配度最大的結(jié)果,可以使用extractOne
,注意這里返回的是 元組 類型, 還有就是匹配度最大的結(jié)果不一定是我們想要的數(shù)據(jù),可以通過下面的示例和兩個(gè)實(shí)戰(zhàn)應(yīng)用體會(huì)一下
3. 實(shí)戰(zhàn)應(yīng)用
這里舉兩個(gè)實(shí)戰(zhàn)應(yīng)用的小例子,第一個(gè)是公司名稱字段的模糊匹配,第二個(gè)是省市字段的模糊匹配
3.1 公司名稱字段模糊匹配
數(shù)據(jù)及待匹配的數(shù)據(jù)樣式如下:自己獲取到的數(shù)據(jù)字段的名稱很簡(jiǎn)潔,并不是公司的全稱,因此需要進(jìn)行兩個(gè)字段的合并

直接將代碼封裝為函數(shù),主要是為了方便日后的調(diào)用,這里參數(shù)設(shè)置的比較詳細(xì),執(zhí)行結(jié)果如下:

3.1.1?參數(shù)講解
第一個(gè)參數(shù)df_1是自己獲取的欲合并的左側(cè)數(shù)據(jù)(這里是data變量);
第二個(gè)參數(shù)df_2是待匹配的欲合并的右側(cè)數(shù)據(jù)(這里是company變量);
第三個(gè)參數(shù)key1是df_1中要處理的字段名稱(這里是data變量里的‘公司名稱’字段)
第四個(gè)參數(shù)key2是df_2中要匹配的字段名稱(這里是company變量里的‘公司名稱’字段)
第五個(gè)參數(shù)threshold是設(shè)定提取結(jié)果匹配度的標(biāo)準(zhǔn)。注意這里就是對(duì)extractOne方法的完善,提取到的最大匹配度的結(jié)果并不一定是我們需要的,所以需要設(shè)定一個(gè)閾值來評(píng)判,這個(gè)值就為90,只有是大于等于90,這個(gè)匹配結(jié)果我們才可以接受
第六個(gè)參數(shù),默認(rèn)參數(shù)就是只返回兩個(gè)匹配成功的結(jié)果
返回值:為df_1添加‘matches’字段后的新的DataFrame數(shù)據(jù)
3.1.2 核心代碼講解
第一部分代碼如下,可以參考上面講解process.extract
方法,這里就是直接使用,所以返回的結(jié)果m就是列表中嵌套元祖的數(shù)據(jù)格式,樣式為: [(‘鄭州市’, 90), (‘河南省’, 0)],因此第一次寫入到’matches’字段中的數(shù)據(jù)也就是這種格式
注意,注意:元祖中的第一個(gè)是匹配成功的字符串,第二個(gè)就是設(shè)置的threshold
參數(shù)比對(duì)的數(shù)字對(duì)象
第二部分的核心代碼如下,有了上面的梳理,明確了‘matches’字段中的數(shù)據(jù)類型,然后就是進(jìn)行數(shù)據(jù)的提取了,需要處理的部分有兩點(diǎn)需要注意的:
提取匹配成功的字符串,并對(duì)閾值小于90的數(shù)據(jù)填充空值
最后把數(shù)據(jù)添加到‘matches’字段
3.2 省份字段模糊匹配
自己的數(shù)據(jù)和待匹配的數(shù)據(jù)背景介紹中已經(jīng)有圖片顯示了,上面也已經(jīng)封裝了模糊匹配的函數(shù),這里直接調(diào)用上面的函數(shù),輸入相應(yīng)的參數(shù)即可,代碼以及執(zhí)行結(jié)果如下:

數(shù)據(jù)處理完成,經(jīng)過封裝后的函數(shù)可以直接放在自己自定義的模塊名文件下面,以后可以方便直接導(dǎo)入函數(shù)名即可,可以參考將自定義常用的一些函數(shù)封裝成可以直接調(diào)用的模塊方法。
4. 全部函數(shù)代碼