人教版 四年級數(shù)學(xué)下冊 第五單元 《三角形內(nèi)角和》說課稿
《三角形內(nèi)角和》說課稿
一、說教材
(一)教材的地位和作用
《三角形內(nèi)角和》一課是人教版義務(wù)教育課程標(biāo)準(zhǔn)實驗教材四年級下冊第五單元的內(nèi)容,是在學(xué)生學(xué)習(xí)了《三角形的特性》以及《三角形三邊關(guān)系》、《三角形的分類》之后進(jìn)行的,在此之后則是《圖形的拼組》,它是三角形的一個重要特征,也是掌握多邊形內(nèi)角和及解決其他實際問題的基礎(chǔ),因此,學(xué)習(xí)、掌握三角形的內(nèi)角和是180°這一規(guī)律具有重要意義。
(二)教具、學(xué)具準(zhǔn)備
教具:多媒體課件,若干個形狀大小不同的三角形紙片。
學(xué)具:三角尺、量角器、每組若干個形狀大小不同的三角形紙片。
(三)教學(xué)目標(biāo)
基于以上對教材的分析以及對教學(xué)現(xiàn)狀的思考,我從知識與技能、教學(xué)過程與方法、情感態(tài)度價值觀三方面擬定了本節(jié)課的教學(xué)目標(biāo):
1.通過“量一量”、“算一算”、“拼一拼”、“折一折”的小組活動的方法,探索發(fā)現(xiàn)驗證三角形內(nèi)角和等于180°,并能應(yīng)用這一知識解決一些簡單問題。 ???
2.通過把三角形的內(nèi)角和轉(zhuǎn)化為平角進(jìn)行探究實驗,滲透“轉(zhuǎn)化”的數(shù)學(xué)思想。 ???
3.通過數(shù)學(xué)活動使學(xué)生獲得成功的體驗,增強(qiáng)自信心。培養(yǎng)學(xué)生的創(chuàng)新意識、探索精神和實踐能力。
(四)教學(xué)重、難點(diǎn)
因為學(xué)生已經(jīng)掌握了三角形的概念、分類,熟悉了鈍角、銳角、平角這些角的知識。對于三角形的內(nèi)角和是多少度,學(xué)生并不陌生,也有提前預(yù)習(xí)的習(xí)慣,學(xué)生幾乎都能回答出三角形的內(nèi)角和是180°。在整個過程中學(xué)生要了解的是“內(nèi)角”的概念,如何驗證得出三角形的內(nèi)角和是180°。因此本節(jié)課我提出的教學(xué)的重、難點(diǎn)是:驗證三角形的內(nèi)角和是180°。
二、說教法、學(xué)法
本節(jié)課主要是通過教師的精心引導(dǎo)和點(diǎn)撥,學(xué)生在小組中合作探索,通過量一量、折一折、撕一撕、畫,選擇不同的一種或者幾種方法來驗證三角形的內(nèi)角和是180°。
因為《課程標(biāo)準(zhǔn)》明確指出:“要結(jié)合有關(guān)內(nèi)容的教學(xué),引導(dǎo)學(xué)生進(jìn)行觀察、操作、猜想,培養(yǎng)學(xué)生初步的思維能力”。四年級學(xué)生經(jīng)過第一學(xué)段以及本單元的學(xué)習(xí),已經(jīng)掌握了三角形的分類,比較熟悉平角等有關(guān)知識;具備了初步的動手操作、主動探究的能力,他們正處于由形象思維向抽象思維過渡的階段。因此,本節(jié)課,我將重點(diǎn)引導(dǎo)學(xué)生從“猜測――驗證”展開學(xué)習(xí)活動,讓學(xué)生感受這種重要的數(shù)學(xué)思維方式。
三、說教學(xué)過程 ???
我以引入、猜測、證實、深化、應(yīng)用和小結(jié)六個活動環(huán)節(jié)為主線,讓學(xué)生通過自主探究學(xué)習(xí)進(jìn)行數(shù)學(xué)的思考過程,積累數(shù)學(xué)活動經(jīng)驗。 ??
(一)引入 ?????
先出示課件,復(fù)習(xí)什么是平角,平角有多少度。 ???
呈現(xiàn)情境:出示多個已學(xué)的平面圖形,讓學(xué)生認(rèn)識什么是“內(nèi)角”。(把圖形中相鄰兩邊的夾角稱為內(nèi)角)長方形有幾個內(nèi)角?(四個)它的內(nèi)角有什么特點(diǎn)?(都是直角)這四個內(nèi)角的和是多少?(360°)三角形有幾個內(nèi)角呢?從而引入課題。(板書:三角形內(nèi)角和)
【設(shè)計意圖】讓學(xué)生整體感知三角形內(nèi)角和的知識,這樣的教學(xué),將三角形內(nèi)角和置于平面圖形內(nèi)角和的大背景中,拓展了三角形內(nèi)角和的數(shù)學(xué)知識背景,滲透數(shù)學(xué)知識之間的聯(lián)系,有效地避免了新知識的“橫空出現(xiàn)”。 ?
???(二)猜測
提出問題:長方形內(nèi)角和是360°,那么三角形內(nèi)角和是多少呢? ??????
教師把長方形紙的一個角內(nèi)折,再剪下來,問:這是什么圖形?(直角三角形)
長方形的內(nèi)角和是360o,那么你們想知道這個三角形的內(nèi)角和是多少嗎? ????
【設(shè)計意圖】引導(dǎo)學(xué)生提出合理猜測:三角形的內(nèi)角和是180°。
(三)驗證
(1)量:請學(xué)生每人畫一個自己喜歡的三角形,接著用量角器量一量,然后把這三個內(nèi)角的度數(shù)加起來算一算,看看得出的三角形的內(nèi)角和是多少度? ???
(2)撕―拼:利用平角是180°這一特點(diǎn),啟發(fā)學(xué)生能否也把三角形的三個內(nèi)角撕下來拼在一起,成為一個平角?請學(xué)生同桌合作,從學(xué)具中選出一個三角形,撕下來拼一拼。
(3)折-拼:把三角形的三個內(nèi)角都向內(nèi)折,把這三個內(nèi)角拼組成一個平角,一個平角是180°,所以得出三角形的內(nèi)角和是180°。
(4)畫:根據(jù)長方形的內(nèi)角和來驗證三角形內(nèi)角和是180°。
?一個長方形有4個直角,每個直角90°,那么長方形的內(nèi)角和就是360°,每個長方形都可以平均分成兩個直角三角形,每個直角三角形的內(nèi)角和就是180°。從長方形的內(nèi)角和聯(lián)想到直角三角形的內(nèi)角和是180°。
直角三角形的內(nèi)角和是180o,那么三角形中的銳角三角形和鈍角三角形的內(nèi)角和是不是也等于180o呢?引導(dǎo)學(xué)生在自己的彩紙上任意畫出一個銳角三角形或鈍角三角形并剪下來,自由選擇“量一量,剪一剪,折一折,拼一拼”中的一種或幾種方法證實鈍角三角形的內(nèi)角和與鈍角三角形的內(nèi)角和是多少度。 ??教師根據(jù)學(xué)生的匯報,板書:銳角三角形的內(nèi)角和是180o,鈍角三角形的內(nèi)角和是180o,從而得出結(jié)論:三角形的內(nèi)角和是180o。
【設(shè)計意圖】利用已經(jīng)學(xué)過的知識構(gòu)建新的數(shù)學(xué)知識,這不僅有助于學(xué)生理解新的知識,而且是一種非常重要的學(xué)習(xí)方法。在探索三角形內(nèi)角和規(guī)律的教學(xué)中,注意引導(dǎo)學(xué)生將三角形內(nèi)角和與平角、長方形四個內(nèi)角的和等知識聯(lián)系起來,并使學(xué)生在新舊知識的連接點(diǎn)和新知識的生長點(diǎn)上把握好他們之間的內(nèi)在聯(lián)系。在整個探索過程中,學(xué)生積極思考并大膽發(fā)言,他們的創(chuàng)造性思維得到了充分發(fā)揮。
(四)深化
質(zhì)疑:大小不同的三角形,它們的內(nèi)角和會是一樣嗎? ??
觀察:(指著黑板上兩個大小不同但三個角對應(yīng)相等的三角形并說明原因,三角形變大了,但角的大小沒有變。) ???
結(jié)論:角的兩條邊長了,但角的大小不變。因為角的大小與邊的長短無關(guān)。 ???
【設(shè)計意圖】小學(xué)生由于年齡小,容易受圖形或物體的外在形式的影響。教師主要是引導(dǎo)學(xué)生與角的有關(guān)知識聯(lián)系起來,通過讓學(xué)生觀察利用“角的大小與邊的長短無關(guān)”的舊知識來理解說明。 ??
(五)應(yīng)用 ???????
1、任意一個三角形對折一下變成的三角形的和是多少度? ??????
2、(1)將兩個完全一樣的直角三角形拼成一個大的三角形 ?,這個大的三 角形的內(nèi)角和是多少度? ??????????
(2)將一個大三角形分成若干個小三角形,這些小三角形的內(nèi)角和分別是多少度? ?????
?3、已知∠1、∠2、∠3是三角形中的三個內(nèi)角,
(1)∠1=45o ?∠2=65o ?∠3=( ???),這是( ?????)三角形;
(2)∠1=20o ?∠3=50o ?∠2=( ???),這是( ?????)三角形;
(3)∠2=15o ?∠3=75o ?∠1=( ???),這是( ?????)三角形。
?教師講評時,著重讓學(xué)生說一說每道題的計算方法及依據(jù),鼓勵學(xué)生用不同的方法解答。 ?講解(2)、(3)題時,問:一個三角形可能有兩個直角嗎?一個三角形可能有兩個鈍角嗎?你能用今天的知識說明嗎?
(六)小結(jié):學(xué)了這節(jié)課,你有什么收獲?
四、說板書設(shè)計
三角形內(nèi)角和
?
五、說教學(xué)反思
新課程將探究式學(xué)習(xí)作為學(xué)生學(xué)習(xí)的主要方式之一,著重點(diǎn)放在讓學(xué)生在主動參與的過程中進(jìn)行學(xué)習(xí),在探究問題的活動中獲取知識并主動建構(gòu)新的認(rèn)知結(jié)構(gòu),了解獲取知識的途徑和技巧。
這節(jié)課我設(shè)計了以“觀察—猜想—驗證—應(yīng)用”為主線,讓學(xué)生在自主學(xué)習(xí)中“不知不覺”學(xué)習(xí)到新的知識。在學(xué)生猜測三角形內(nèi)角和是多少度的基礎(chǔ)上,引導(dǎo)學(xué)生通過探究活動來驗證自己的觀點(diǎn)是否正確,激發(fā)求知的渴望和學(xué)習(xí)的熱情,最后達(dá)成共識。
這節(jié)課我創(chuàng)設(shè)了學(xué)生喜歡的情境:“三個三角形的爭吵”入手,讓學(xué)生自己動手探索三角形的內(nèi)角和。讓學(xué)生“量一量”、“剪—拼”、貼近了學(xué)生的生活,降低了學(xué)習(xí)難度,注重學(xué)生們的動手實踐,親生去體驗去感悟。在操作反饋的過程中我提出了兩個問題:
第一,你選用什么三角形,采用什么方法來驗證;
第二,經(jīng)過操作得到什么結(jié)論。
學(xué)生分小組對大小不一的三角形進(jìn)行驗證,經(jīng)歷量、剪、拼一系列操作活動,從而得出“三角形內(nèi)角和是180°”這一結(jié)論。
?