JAD|抽一管血,也可測(cè)出抑郁癥!

抑郁癥是當(dāng)代高強(qiáng)度生活節(jié)奏、壓力下常被提及的一種心理疾病。抑郁癥主要表現(xiàn)為心境低落、興趣缺乏、愉快感喪失,其最大的危險(xiǎn)就是不易被察覺(jué),包括患者自身以及患者周?chē)娜?。輕度抑郁癥可能會(huì)逐漸發(fā)展為重度抑郁癥(Major depressive disorder, MDD),甚至產(chǎn)生自殺念頭,危及生命[1]。
目前重度抑郁癥的診斷主要依賴(lài)于對(duì)癥狀的主觀識(shí)別,沒(méi)有客觀的生物標(biāo)志物[2]。基于血液的重度抑郁癥生物標(biāo)志物的篩查將會(huì)更方便、更高效,并且可有效監(jiān)測(cè)重度抑郁癥的疾病過(guò)程。在愛(ài)思唯爾旗下全醫(yī)學(xué)信息平臺(tái)ClinicalKey中,期刊Journal of Affective Disorders發(fā)表了一篇論文(前往文末“閱讀原文”瀏覽全文),讓我們看到了“抽一管血診斷抑郁癥”的可能。

找到關(guān)鍵的四種蛋白
PROTEIN
迄今為止,只有C反應(yīng)蛋白 (CRP)和血清淀粉樣蛋白A1被證實(shí)在重度抑郁癥患者中發(fā)生持續(xù)變化[5-6]。然而,已發(fā)表的研究受試者的同質(zhì)性較差,獨(dú)立驗(yàn)證的樣本量也很小[5-10]。此外,重度抑郁癥的分子標(biāo)記經(jīng)常與精神分裂癥(SZ)和雙相情感障礙(BD)的分子標(biāo)記重疊。
研究分析了患有重度抑郁癥、精神分裂癥或雙相I型障礙(BD-I)和健康對(duì)照(HC)的患者。通過(guò)血漿蛋白質(zhì)組學(xué)分析發(fā)現(xiàn),重度抑郁癥患者中存在64個(gè)顯著改變的蛋白質(zhì),其中40個(gè)與健康人相比明顯上調(diào),24個(gè)明顯下調(diào)(圖1A和B)。其中的13種核心蛋白,如圖 1C 所示。

進(jìn)一步篩選后,三種候選蛋白質(zhì)浮出水面,分別是“P02741 (CRP)”、“A0A024R944 (抗凝血酶III, ATIII)”和“P19652 (Alpha-1-酸性糖蛋白2,?ORM2)”。再將混合式特征選擇(HFS)算法用于所有969種蛋白質(zhì),選出兩種蛋白質(zhì)“P02774?(維生素D結(jié)合蛋白,?VDB)”和“B2RMS9 (Inter-Alpha球蛋白抑制劑H4, ITIH4)”作為最佳特征蛋白。
?
隨后使用酶聯(lián)免疫吸附測(cè)定(ELISA)法對(duì)五種候選蛋白進(jìn)行了驗(yàn)證,除ORM2外的所有蛋白的表達(dá)水平與蛋白質(zhì)組學(xué)的結(jié)果一致,如圖2所示。除了重度抑郁癥與精神分裂癥患者的比較外,每?jī)蓚€(gè)組之間的血漿ATIII水平都有顯著差異。此外,與其他三組相比,重度抑郁癥患者的血漿ITIH4和VDB水平更高。

四項(xiàng)并查,準(zhǔn)確率更高
AND CHECK
四種蛋白的診斷能力中,CRP表現(xiàn)出單獨(dú)蛋白診斷重度抑郁癥的能力最好,其次是ATIII、ITIH4和VDB。然而,與任何一種蛋白相比,四種蛋白質(zhì)的組合(Composite Biomarker)對(duì)重度抑郁癥診斷能力更高。

血漿CRP、ATIII、ITIH4和VDB四種蛋白的組合可以準(zhǔn)確地找出未接受藥物治療的重度抑郁癥患者,并與精神分裂癥或雙相I型障礙患者區(qū)分,為使用血漿生物標(biāo)志物診斷抑郁癥提供了有力的證據(jù),“抽一管血診斷抑郁癥”在不遠(yuǎn)的未來(lái)一定可以實(shí)現(xiàn)。
參考文獻(xiàn)
[1].Uher R., Payne J.L., Pavlova B., and Perlis R.H.: Major depressive disorder in DSM-5: implications for clinical practice and research of changes from DSM-IV. Depress. Anxiety 2014; 31: pp. 459-471
[2].Kupfer D.J., Frank E., and Phillips M.L.: Major depressive disorder: new clinical, neurobiological, and treatment perspectives. Lancet (Lond., Engl.) 2012; 379: pp. 1045-1055
[3].?Silva-Costa L.C., Carlson P.T., Guest P.C., de Almeida V., and Martins-de-Souza D.: Proteomic Markers for Depression. Adv. Exp. Med. Biol. 2019; 1118: pp. 191-206
[4].Comes A.L., Papiol S., Mueller T., Geyer P.E., Mann M., and Schulze T.G.: Proteomics for blood biomarker exploration of severe mental illness: pitfalls of the past and potential for the future. Transl Psychiatry 2018; 8: pp. 160
[5].Wang Q., Su X., Jiang X., Dong X., Fan Y., Zhang J., Yu C., Gao W., Shi S., Jiang J., Jiang W., and Wei T.: iTRAQ technology-based identification of human peripheral serum proteins associated with depression. Neuroscience 2016; 330: pp. 291-325
[6].?Yang Y., Chen J., Liu C., Fang L., Liu Z., Guo J., Cheng K., Zhou C., Zhan Y., Melgiri N.D., Zhang L., Zhong J., Chen J., Rao C., and Xie P.: The Extrinsic Coagulation Pathway: a Biomarker for Suicidal Behavior in Major Depressive Disorder. Sci. Rep. 2016; 6: pp. 32882
[7].?Lee M.Y., Kim E.Y., Kim S.H., Cho K.C., Ha K., Kim K.P., and Ahn Y.M.: Discovery of serum protein biomarkers in drug-free patients with major depressive disorder. Prog. Neuropsychopharmacol. Biol. Psychiatry 2016; 69: pp. 60-68
[8].?Ren J., Zhao G., Sun X., Liu H., Jiang P., Chen J., Wu Z., Peng D., Fang Y., and Zhang C.: Identification of plasma Biomarkers for distinguishing bipolar depression from major depressive disorder by iTRAQ-coupled LC-MS/MS and bioinformatics analysis. Psychoneuroendocrinology 2017; 86: pp. 17-24
[9].?Stelzhammer V., Haenisch F., Chan M.K., Cooper J.D., Steiner J., Steeb H., Martins-de-Souza D., Rahmoune H., Guest P.C., and Bahn S.: Proteomic changes in serum of first onset, antidepressant drug-naive major depression patients. Int. J. Neuropsychopharmacol. 2014; 17: pp. 1599-1608
[10].?Xu H.B., Zhang R.F., Luo D., Zhou Y., Wang Y., Fang L., Li W.J., Mu J., Zhang L., Zhang Y., and Xie P.: Comparative proteomic analysis of plasma from major depressive patients: identification of proteins associated with lipid metabolism and immunoregulation. Int. J. Neuropsychopharmacol. 2012; 15: pp. 1413-1425
[11].?Yachen Shi., Ruize Song., Liping Wang., Yangjian Qi., Hongxing Zhang., Jianli Zhu., Xiaobin Zhang., Xiaowei Tang., Qiongqiong Zhan., Yang Zhao., Dick F. Swaab., Ai-Min Bao Zhijun Zhang.: Identifying Plasma Biomarkers with high specificity for major depressive disorder: A multi-level proteomics study. Journal of Affective Disorders. 2020; 227: pp. 620-630