【標(biāo)題速讀】【AdFM】【2022年】【5月】

聲明:本專欄主要對(duì)生命科學(xué)領(lǐng)域的一些期刊文章標(biāo)題進(jìn)行翻譯,所有內(nèi)容均由本人手工整理翻譯。由于本人專業(yè)為生物分析相關(guān),其他領(lǐng)域如果出現(xiàn)翻譯錯(cuò)誤請(qǐng)諒解。
1.Dual-Mode Image Sensing Display
In article number 2111894, Cheolmin Park and co-workers develop a simple approach for doping metal ions into all-inorganic perovskite films by employing metal–organic framework (MOF) nanoparticles. With the self-decomposition of MOF nanoparticles at a certain humidity, metal ions are released into nearby perovskite crystals. The perovskite crystals with the defects passivated with the metal ions result in environmentally stable and enhanced photoluminescence of the perovskite for dual-mode image sensing display.
雙模式圖像傳感顯示器
在文章編號(hào) 2111894 中,Cheolmin Park 及其同事開發(fā)了一種簡(jiǎn)單的方法,通過(guò)使用金屬有機(jī)框架 (MOF) 納米顆粒將金屬離子摻雜到全無(wú)機(jī)鈣鈦礦薄膜中。隨著MOF納米粒子在一定濕度下的自分解,金屬離子被釋放到附近的鈣鈦礦晶體中。具有被金屬離子鈍化的缺陷的鈣鈦礦晶體導(dǎo)致鈣鈦礦的環(huán)境穩(wěn)定和增強(qiáng)的光致發(fā)光,用于雙模式圖像傳感顯示。

2.Artificial Muscles
In article number 2111145, Il-Kwon Oh and co-workers grow a copper nanowire forest directly on the surface of a shape memory alloy coil (SMAc) to provoke thermal dissipation and accelerate its actuation speed. Then, the cooling-accelerated Cu nanowire grown SMAc is applied as artificial muscles for a versatile prosthetic hand capable of making a series of sign languages and playing the grand piano. Moreover, a unique feature of felines, a retractable claw, is realized by using the cooling-accelerated Cu nanowire grown SMAc for successful control of traction force.
人工肌肉
在文章編號(hào) 2111145 中,Il-Kwon Oh 和同事直接在形狀記憶合金線圈 (SMAc) 的表面上生長(zhǎng)銅納米線森林,以激發(fā)熱量耗散并加快其驅(qū)動(dòng)速度。然后,將加速冷卻的銅納米線生長(zhǎng)的 SMAc 用作多功能假手的人造肌肉,能夠發(fā)出一系列手語(yǔ)并彈奏三角鋼琴。此外,通過(guò)使用冷卻加速的銅納米線生長(zhǎng)的SMAc來(lái)成功控制牽引力,實(shí)現(xiàn)了貓科動(dòng)物的獨(dú)特功能,即可伸縮的爪子。

3.Solar-to-Ammonia Efficiency
In article 2108316, Damien Voiry and co-workers report a single atom catalyst based on iron single atoms supported on 2D MoS2 nanosheets. The catalyst demonstrates near-unity selectivity for the electrosynthesis of ammonia with a solar-to-NH3 efficiency of 3.4% when coupled to an external InGaP/GaAs/Ge triple-junction solar cell.
太陽(yáng)能轉(zhuǎn)氨效率
在文章 2108316 中,Damien Voiry 及其同事報(bào)告了一種基于 2D MoS2 納米片上支撐的鐵單原子的單原子催化劑。當(dāng)與外部 InGaP/GaAs/Ge 三結(jié)太陽(yáng)能電池耦合時(shí),該催化劑表現(xiàn)出近乎一致的氨電合成選擇性,太陽(yáng)能轉(zhuǎn)化為 NH3 的效率為 3.4%。

4.Cellulose Ester Dispersion
To minimize the deleterious impacts of agrochemicals and polymer carriers, in article number 2108046, Charles H. Opperman, Saad A. Khan, and co-workers design aqueous dispersions of biodegradable polymers with tunable morphology. These green formulations show controlled release, fast spread, and impressive resistance to washing off from rain when used in foliar applications.
纖維素酯分散體
為了最大限度地減少農(nóng)用化學(xué)品和聚合物載體的有害影響,Charles H. Opperman、Saad A. Khan 及其同事在文章編號(hào) 2108046 中設(shè)計(jì)了具有可調(diào)形態(tài)的可生物降解聚合物的水分散體。當(dāng)用于葉面施用時(shí),這些綠色配方表現(xiàn)出受控釋放、快速傳播和令人印象深刻的耐雨水沖刷性。

5.Escaping the Labyrinth of Bioinspiration: Biodiversity as Key to Successful Product Innovation.
逃離生物靈感的迷宮:生物多樣性是成功產(chǎn)品創(chuàng)新的關(guān)鍵。

6.Recent Progress of Micro/Nanorobots for Cell Delivery and Manipulation.
用于細(xì)胞輸送和操作的微/納米機(jī)器人的最新進(jìn)展。

7.In Situ Surface Self-Reconstruction Strategies in Li-Rich Mn-Based Layered Cathodes for Energy-Dense Li-Ion Batteries.
高能量密度鋰離子電池富鋰錳基層狀陰極的原位表面自重構(gòu)策略。

8.In Situ Investigation on Life-Time Dynamic Structure–Performance Correlation Toward Electrocatalyst Service Behavior in Water Splitting.
水分解中電催化劑使用行為的壽命動(dòng)態(tài)結(jié)構(gòu)-性能相關(guān)性的原位研究。

9.Insights into 2D/2D MXene Heterostructures for Improved Synergy in Structure toward Next-Generation Supercapacitors: A Review.
深入了解 2D/2D MXene 異質(zhì)結(jié)構(gòu)以改善下一代超級(jí)電容器結(jié)構(gòu)的協(xié)同作用:綜述。

10.Metal–Organic Framework-Assisted Metal-Ion Doping in All-Inorganic Perovskite for Dual-Mode Image Sensing Display.
用于雙模式圖像傳感顯示的全無(wú)機(jī)鈣鈦礦中金屬有機(jī)框架輔助金屬離子摻雜。

11.Cooling-Accelerated Nanowire-Nitinol Hybrid Muscle for Versatile Prosthetic Hand and Biomimetic Retractable Claw.
用于多功能假手和仿生可伸縮爪的冷卻加速納米線-鎳鈦合金混合肌肉。

12.3.4% Solar-to-Ammonia Efficiency from Nitrate Using Fe Single Atomic Catalyst Supported on MoS2 Nanosheets.
使用 MoS2 納米片負(fù)載的 Fe 單原子催化劑將硝酸鹽轉(zhuǎn)化為氨的效率達(dá)到 3.4%。

13.Toward Sustainable Crop Protection: Aqueous Dispersions of Biodegradable Particles with Tunable Release and Rainfastness.
實(shí)現(xiàn)可持續(xù)作物保護(hù):具有可調(diào)釋放和耐雨性的可生物降解顆粒的水分散體。

14.Sequential Assembly Tailored Interior of Porous Carbon Spheres for Boosted Water Decontamination through Peroxymonosulfate Activation.
連續(xù)組裝定制的多孔碳球內(nèi)部,通過(guò)過(guò)一硫酸鹽活化增強(qiáng)水凈化。

15.Highly Active Hollow Porous Carbon Spheres@Graphite Felt Composite Electrode for High Power Density Vanadium Flow Batteries.
用于高功率密度釩液流電池的高活性空心多孔碳球@石墨氈復(fù)合電極。

16.Site-Specific Axial Oxygen Coordinated FeN4 Active Sites for Highly Selective Electroreduction of Carbon Dioxide.
用于二氧化碳高選擇性電還原的位點(diǎn)特異性軸向氧配位 FeN4 活性位點(diǎn)。

17.Nanodot-in-Nanofiber Structured Carbon-Confined Sb2Se3 Crystallites for Fast and Durable Sodium Storage.
納米纖維中的納米點(diǎn)結(jié)構(gòu)碳限制 Sb2Se3 微晶,用于快速、持久的鈉存儲(chǔ)。

18.3D Printed Template-Directed Assembly of Multiscale Graphene Structures.
3D 打印模板定向組裝多尺度石墨烯結(jié)構(gòu)。

19.Photo-Induced Dynamic Room Temperature Phosphorescence Based on Triphenyl Phosphonium Containing Polymers.
基于含三苯基鏻聚合物的光致動(dòng)態(tài)室溫磷光。

20.Edge and Point-Defect Induced Electronic and Magnetic Properties in Monolayer PtSe2.
單層 PtSe2 中邊緣和點(diǎn)缺陷引起的電子和磁性。

21.Genetically Encoded Synthetic Beta Cells for Insulin Biosynthesis and Release under Hyperglycemic Conditions.
用于高血糖條件下胰島素生物合成和釋放的基因編碼合成β細(xì)胞。

22.Specific Adsorption Reinforced Interface Enabling Stable Lithium Metal Electrode.
特定的吸附增強(qiáng)界面可實(shí)現(xiàn)穩(wěn)定的鋰金屬電極。

23.Capsules as Miniature Factories: On-Demand Synthesis in Prepackaged Capsules Enabled by Switching on a Catalytic Reaction.
膠囊作為微型工廠:通過(guò)開啟催化反應(yīng)實(shí)現(xiàn)預(yù)包裝膠囊中的按需合成。

24.Operando Formation of Van der Waals Heterostructures for Achieving Macroscale Superlubricity on Engineering Rough and Worn Surfaces.
范德華異質(zhì)結(jié)構(gòu)的操作形成,用于在工程粗糙和磨損表面上實(shí)現(xiàn)宏觀超潤(rùn)滑。

25.Domain-Confined Etching Strategy to Regulate Defective Sites in Carbon for High-Efficiency Electrocatalytic Oxygen Reduction.
用于調(diào)節(jié)碳缺陷位點(diǎn)以實(shí)現(xiàn)高效電催化氧還原的域限制蝕刻策略。

26.Energy Optimization of a Mirror-Symmetric Spherical Triboelectric Nanogenerator.
鏡面對(duì)稱球形摩擦納米發(fā)電機(jī)的能量?jī)?yōu)化。

27.Risk-Perceptional and Feedback-Controlled Response System Based on NO2-Detecting Artificial Sensory Synapse.
基于 NO2 檢測(cè)人工感覺突觸的風(fēng)險(xiǎn)感知和反饋控制響應(yīng)系統(tǒng)。

28.Pursuing High-Performance Organic Field-Effect Transistors through Organic Salt Doping.
通過(guò)有機(jī)鹽摻雜追求高性能有機(jī)場(chǎng)效應(yīng)晶體管。

29.Harvesting of Infrared Part of Sunlight to Enhance Polaron Transport and Solar Water Splitting.
收集陽(yáng)光的紅外部分以增強(qiáng)極化子傳輸和太陽(yáng)能水分解。

30.Self-Healing SeO2 Additives Enable Zinc Metal Reversibility in Aqueous ZnSO4 Electrolytes.
自修復(fù) SeO2 添加劑使鋅金屬在水性 ZnSO4 電解質(zhì)中具有可逆性。

31.Magic of Architecting Oligo-DNAs: 3D Structure-Dependent Stability and Programmable Specificity to Tumor Cells.
構(gòu)建寡 DNA 的魔力:3D 結(jié)構(gòu)依賴性穩(wěn)定性和對(duì)腫瘤細(xì)胞的可編程特異性。

32.Compromising Charge Generation and Recombination with Asymmetric Molecule for High-Performance Binary Organic Photovoltaics with Over 18% Certified Efficiency.
利用不對(duì)稱分子降低電荷產(chǎn)生和復(fù)合,實(shí)現(xiàn)認(rèn)證效率超過(guò) 18% 的高性能二元有機(jī)光伏。

33.Seeking New Layered Oxyselenides with Promising Thermoelectric Performance.
尋求具有良好熱電性能的新型層狀硒化物。

34.Precursor Tailoring Enables Alkylammonium Tin Halide Perovskite Phosphors for Solid-State Lighting.
前驅(qū)體定制使烷基銨錫鹵化物鈣鈦礦磷光體能夠用于固態(tài)照明。

35.Synergistic Polarization Loss of MoS2-Based Multiphase Solid Solution for Electromagnetic Wave Absorption.
用于電磁波吸收的 MoS2 基多相固溶體的協(xié)同極化損耗。

36.Regulating the Local Spin State and Band Structure in Ni3S2 Nanosheet for Improved Oxygen Evolution Activity.
調(diào)節(jié) Ni3S2 納米片中的局部自旋態(tài)和能帶結(jié)構(gòu)以提高析氧活性。

37.Manipulating Interfacial Thermal Conduction of 2D Janus Heterostructure via a Thermo-Mechanical Coupling.
通過(guò)熱機(jī)械耦合操縱 2D Janus 異質(zhì)結(jié)構(gòu)的界面熱傳導(dǎo)。

38.High-Throughput Production of Cheap Mineral-Based Heterostructures for High Power Sodium Ion Capacitors.
用于高功率鈉離子電容器的廉價(jià)礦物基異質(zhì)結(jié)構(gòu)的高通量生產(chǎn)。

39.Ultrathin DDR Films with Exceptionally High CO2 Flux and Uniformly Adjustable Orientations.
超薄 DDR 薄膜具有極高的 CO2 通量和均勻可調(diào)的方向。

40.Periodic Nanoarray of Graphene pn-Junctions on Silicon Carbide Obtained by Hydrogen Intercalation.
通過(guò)氫插層獲得碳化硅上石墨烯 pn 結(jié)的周期性納米陣列。

41.Synergistic Effects of Multifunctional Lanthanides Doped CsPbBrCl2 Quantum Dots for Efficient and Stable MAPbI3 Perovskite Solar Cells.
多功能鑭系元素?fù)诫s CsPbBrCl2 量子點(diǎn)對(duì)高效穩(wěn)定 MAPbI3 鈣鈦礦太陽(yáng)能電池的協(xié)同效應(yīng)。

42.High Space Efficiency Hybrid Nanogenerators for Effective Water Wave Energy Harvesting.
用于有效收集水波能量的高空間效率混合納米發(fā)電機(jī)。

43.Tuning Mixed Electronic/Ionic Conductivity of 2D CdPS3 Nanosheets as an Anode Material by Synergistic Intercalation and Vacancy Engineering.
通過(guò)協(xié)同插層和空位工程調(diào)節(jié)作為陽(yáng)極材料的 2D CdPS3 納米片的混合電子/離子電導(dǎo)率。

44.Cyber-Physical Watermarking with Inkjet Edible Bioprinting.
使用噴墨可食用生物打印進(jìn)行網(wǎng)絡(luò)物理水印。

45.Underwater Energy Harvesting and Sensing by Sweeping Out the Charges in an Electric Double Layer using an Oil Droplet.
通過(guò)使用油滴清除雙電層中的電荷來(lái)進(jìn)行水下能量收集和傳感。

46.Manipulation of New Married Edge-Adjacent Fe2N5 Catalysts and Identification of Active Species for Oxygen Reduction in Wide pH Range.
新型聯(lián)邊 Fe2N5 催化劑的操作以及寬 pH 范圍內(nèi)氧還原活性物質(zhì)的鑒定。

47.Fast Identification of the Crystallographic Orientation of Violet Phosphorus Nanoflakes with Preferred In-Plane Cleavage Edge Orientation.
快速鑒定具有優(yōu)選面內(nèi)解理邊緣取向的紫磷納米片的晶體取向。

48.Yolk–Shell Antimony/Carbon: Scalable Synthesis and Structural Stability Study in Sodium Ion Batteries.
蛋黃殼銻/碳:鈉離子電池的可擴(kuò)展合成和結(jié)構(gòu)穩(wěn)定性研究。

49.Radially Porous Nanocomposite Scaffolds with Enhanced Capability for Guiding Bone Regeneration In Vivo.
具有增強(qiáng)的引導(dǎo)體內(nèi)骨再生能力的徑向多孔納米復(fù)合支架。

50.Strain-Activated Copper Catalyst for pH-Universal Hydrogen Evolution Reaction.
用于 pH 通用析氫反應(yīng)的應(yīng)變活化銅催化劑。

51.Multi-Metal Oxide Nanoparticles Multi-metal oxide (MMO) nanomaterials have significant potential to facilitate various demanding (electro)catalytic reactions, but its intrinsic complexity hinders the in-depth understanding of the origin of the catalytic activity. In article number 2110857, Seoin Back, Seung-Ho Yu, Yung-Eun Sung, Taeghwan Hyeon, and co-workers report the structural understanding of uniform-sized spinel-type MMO nanoparticles, which boosts the electrocatalytic oxygen reduction reaction (ORR) activity. Physicochemical and electrochemical analyses reveal the contribution of each element to the structural flexibility and corresponding improved ORR activity.
多金屬氧化物納米顆粒多金屬氧化物(MMO)納米材料具有促進(jìn)各種高要求(電)催化反應(yīng)的巨大潛力,但其內(nèi)在的復(fù)雜性阻礙了對(duì)催化活性起源的深入理解。在第 2110857 號(hào)文章中,Seoin Back、Seung-Ho Yu、Yung-Eun Sung、Taeghwan Hyeon 及其同事報(bào)告了對(duì)均勻尺寸尖晶石型 MMO 納米顆粒的結(jié)構(gòu)理解,該納米顆??商岣唠姶呋踹€原反應(yīng) (ORR) 活性。物理化學(xué)和電化學(xué)分析揭示了每種元素對(duì)結(jié)構(gòu)靈活性和相應(yīng)改善的 ORR 活性的貢獻(xiàn)。

52.3D Printing In article number 2112914, Dorota Koziej and co-workers utilize TiO2 nanoparticle-based gels as additive-free inks for 3D printing of structured aerogels. The TiO2 gels are loaded with plasmonic Au nanorods to facilitate photothermal heating of the aerogel. In general, diverse colloidal nanomaterials can be processed into inks and 3D printed, thus giving access to multifunctional aerogels with full control of the nano-, micro-, and macroscopic length scales.
3D 打印 在文章編號(hào) 2112914 中,Dorota Koziej 及其同事利用 TiO2 納米顆粒凝膠作為無(wú)添加劑墨水,用于結(jié)構(gòu)化氣凝膠的 3D 打印。 TiO2 凝膠負(fù)載有等離子體金納米棒,以促進(jìn)氣凝膠的光熱加熱。一般來(lái)說(shuō),不同的膠體納米材料可以加工成墨水和3D打印,從而獲得完全控制納米、微米和宏觀長(zhǎng)度尺度的多功能氣凝膠。

53.Micro-Redoxcapacitors The choice between the battery or the capacitor has long been a standing dilemma, involving sacrifices of either power or energy density. For systems that require combined high capacity and rate performance, the use of both batteries and capacitors is inevitable, hindering reduction in complexity, size, and cost. In article number, 2111805, Haibo Hu, Derek Ho, and co-workers show that a new device category, coined the micro-redoxcapacitor, can resolve the dilemma effectively.
微型氧化還原電容器 電池和電容器之間的選擇長(zhǎng)期以來(lái)一直是一個(gè)長(zhǎng)期的困境,涉及犧牲功率或能量密度。對(duì)于需要高容量和倍率性能的系統(tǒng),電池和電容器的使用是不可避免的,這阻礙了復(fù)雜性、尺寸和成本的降低。在文章編號(hào) 2111805 中,Haibo Hu、Derek Ho 及其同事表明,一種新的器件類別(創(chuàng)造的微型氧化還原電容器)可以有效解決這一困境。

54.Charge Redistribution In article number 2111901, Young Hwa Jung, Hyun-Wook Lee, and co-workers demonstrate that the fast reaction rate activates charge redistribution in manganese hexacyanomanganates, which can mitigate the strong Jahn–Teller effect of high-spin Mn(III) by solving the unequal number of electrons in eg orbitals. As a result, the dissolution of Mn is effectively suppressed, inducing improved long-term cyclability in an aqueous electrolyte.
電荷重新分布 在文章編號(hào) 2111901 中,Young Hwa Jung、Hyun-Wook Lee 及其同事證明,快速反應(yīng)速率可激活六氰基錳酸錳中的電荷重新分布,從而減輕高自旋 Mn(III) 的強(qiáng) Jahn-Teller 效應(yīng)通過(guò)解決例如軌道中電子數(shù)量不等的問題。結(jié)果,有效抑制了錳的溶解,從而改善了水性電解質(zhì)中的長(zhǎng)期循環(huán)性能。

55.Recent Progress in Double Network Elastomers: One Plus One is Greater Than Two.
雙網(wǎng)絡(luò)彈性體最新進(jìn)展:一加一大于二。

56.Optimizing the Electrocatalytic Selectivity of Carbon Dioxide Reduction Reaction by Regulating the Electronic Structure of Single-Atom M-N-C Materials.
通過(guò)調(diào)節(jié)單原子MNC材料的電子結(jié)構(gòu)優(yōu)化二氧化碳還原反應(yīng)的電催化選擇性。

57.Topological Materials for Functional Optoelectronic Devices.
功能光電器件的拓?fù)洳牧稀?/p>
58.Non-Radiative Recombination Energy Losses in Non-Fullerene Organic Solar Cells.
非富勒烯有機(jī)太陽(yáng)能電池中的非輻射復(fù)合能量損失。

59.A New Era of Integrative Ice Frozen Assembly into Multiscale Architecturing of Energy Materials.
將冰凍組裝集成到能源材料多尺度架構(gòu)中的新時(shí)代。

60.Gold Nanomaterials-Implemented Wearable Sensors for Healthcare Applications.
用于醫(yī)療保健應(yīng)用的金納米材料實(shí)現(xiàn)的可穿戴傳感器。

61.Atomic Structure Modification of Fe?N?C Catalysts via Morphology Engineering of Graphene for Enhanced Conversion Kinetics of Lithium–Sulfur Batteries.
對(duì) Fe - N - C 催化劑進(jìn)行原子結(jié)構(gòu)改性,以增強(qiáng)鋰硫電池的轉(zhuǎn)換動(dòng)力學(xué)。

62.Additive-Free, Gelled Nanoinks as a 3D Printing Toolbox for Hierarchically Structured Bulk Aerogels.
無(wú)添加劑的凝膠納米墨水作為分層結(jié)構(gòu)散裝氣凝膠的 3D 打印工具箱。

63.Micro-Redoxcapacitor: A Hybrid Architecture Out of the Notorious Energy-Power Density Dilemma.
微型氧化還原電容器:擺脫臭名昭著的能量功率密度困境的混合架構(gòu)。

64.Mitigating Jahn–Teller Effects by Fast Electrode Kinetics Inducing Charge Redistribution.
通過(guò)快速電極動(dòng)力學(xué)誘導(dǎo)電荷重新分布來(lái)減輕 Jahn-Teller 效應(yīng)。

65.Effects of Charge Dynamics in the Emission Layer on the Operational Lifetimes of Blue Phosphorescent Organic Light-Emitting Diodes.
發(fā)射層電荷動(dòng)力學(xué)對(duì)藍(lán)色磷光有機(jī)發(fā)光二極管工作壽命的影響。

66.Multi-Component Crosslinked Hydrogel Electrolyte toward Dendrite-Free Aqueous Zn Ion Batteries with High Temperature Adaptability.
用于具有高溫適應(yīng)性的無(wú)枝晶水性鋅離子電池的多組分交聯(lián)水凝膠電解質(zhì)。

67.Ru Coordinated ZnIn2S4 Triggers Local Lattice-Strain Engineering to Endow High-Efficiency Electrocatalyst for Advanced Zn-Air Batteries.
Ru 配位 ZnIn2S4 觸發(fā)局部晶格應(yīng)變工程,為先進(jìn)鋅空氣電池提供高效電催化劑。

68.Atomically Dispersed Intrinsic Hollow Sites of M-M1-M (M1 = Pt, Ir; M = Fe, Co, Ni, Cu, Pt, Ir) on FeCoNiCuPtIr Nanocrystals Enabling Rapid Water Redox.
FeCoNiCuPtIr 納米晶體上原子分散的 M-M1-M(M1 = Pt、Ir;M = Fe、Co、Ni、Cu、Pt、Ir)本征空心位點(diǎn)可實(shí)現(xiàn)快速水氧化還原。

69.Localized Electrosynthesis and Subsequent Electrochemical Mapping of Catalytically Active Metal–Organic Frameworks.
催化活性金屬有機(jī)框架的局部電合成和后續(xù)電化學(xué)圖譜。

70.High-Performance Non-Volatile Flash Photomemory via Highly Oriented Quasi-2D Perovskite.
通過(guò)高度定向的準(zhǔn)二維鈣鈦礦實(shí)現(xiàn)高性能非易失性閃存光存儲(chǔ)器。

71.Antibacterial Films Based on MOF Composites that Release Iodine Passively or Upon Triggering by Near-Infrared Light.
基于 MOF 復(fù)合材料的抗菌薄膜,可被動(dòng)或近紅外光觸發(fā)釋放碘。

72.Homogeneous Grain Boundary Passivation in Wide-Bandgap Perovskite Films Enables Fabrication of Monolithic Perovskite/Organic Tandem Solar Cells with over 21% Efficiency.
寬帶隙鈣鈦礦薄膜中的均勻晶界鈍化使得單片鈣鈦礦/有機(jī)串聯(lián)太陽(yáng)能電池的制造效率超過(guò) 21%。

73.Managing Phase Orientation and Crystallinity of Printed Dion–Jacobson 2D Perovskite Layers via Controlling Crystallization Kinetics.
通過(guò)控制結(jié)晶動(dòng)力學(xué)來(lái)管理印刷 Dion-Jacobson 2D 鈣鈦礦層的相取向和結(jié)晶度。

74.A Vascularized Conductive Elastic Patch for the Repair of Infarcted Myocardium through Functional Vascular Anastomoses and Electrical Integration.
一種通過(guò)功能性血管吻合和電集成修復(fù)梗塞心肌的血管化導(dǎo)電彈性補(bǔ)片。

75.Negative Capacitance from the Inhomogenous Stray Field in a Ferroelectric–Dielectric Structure.
鐵電介電結(jié)構(gòu)中不均勻雜散場(chǎng)產(chǎn)生的負(fù)電容。

76.Tailoring the Mechanical Performance of Carbon Nanotubes Buckypaper by Aramid Nanofibers towards Robust and Compact Supercapacitor Electrode.
通過(guò)芳綸納米纖維調(diào)整碳納米管巴基紙的機(jī)械性能,以獲得堅(jiān)固且緊湊的超級(jí)電容器電極。

77.Grain-Boundaries-Engineering via Laser Manufactured La-Doped BaSnO3 Nanocrystals with Tailored Surface States Enabling Perovskite Solar Cells with Efficiency of 23.74%.
通過(guò)激光制造具有定制表面狀態(tài)的 La 摻雜 BaSnO3 納米晶體的晶界工程,使鈣鈦礦太陽(yáng)能電池的效率達(dá)到 23.74%。

78.Modulating Crystal and Interfacial Properties by W-Gradient Doping for Highly Stable and Long Life Li-Rich Layered Cathodes.
通過(guò) W 梯度摻雜調(diào)節(jié)晶體和界面特性,實(shí)現(xiàn)高度穩(wěn)定和長(zhǎng)壽命的富鋰層狀陰極。

79.Multifunctional Organic Single-Crystalline Microwire Arrays toward Optical Applications.
面向光學(xué)應(yīng)用的多功能有機(jī)單晶微線陣列。

80.In Situ Customized Illusion Enabled by Global Metasurface Reconstruction.
通過(guò)全局超表面重建實(shí)現(xiàn)原位定制幻覺。

81.Dual Modification Engineering via Lanthanide-Based Halide Quantum Dots and Black Phosphorus Enabled Efficient Perovskite Solar Cells with High Open-Voltage of 1.235 V.
通過(guò)基于鑭系元素的鹵化物量子點(diǎn)和黑磷的雙重改性工程,實(shí)現(xiàn)了具有 1.235 V 高開路電壓的高效鈣鈦礦太陽(yáng)能電池。

82.Nanoporous Kevlar Aerogel Confined Phase Change Fluids Enable Super-Flexible Thermal Diodes.
納米多孔凱夫拉爾氣凝膠限制相變流體可實(shí)現(xiàn)超柔性熱二極管。

83.High-Performance All-Small-Molecule Organic Solar Cells Enabled by Regio-Isomerization of Noncovalently Conformational Locks.
通過(guò)非共價(jià)構(gòu)象鎖的區(qū)域異構(gòu)化實(shí)現(xiàn)高性能全小分子有機(jī)太陽(yáng)能電池。

84.Messy or Ordered? Multiscale Mechanics Dictates Shape-Morphing of 2D Networks Hierarchically Assembled of Responsive Microfibers.
凌亂還是有序?多尺度力學(xué)決定了響應(yīng)性微纖維分層組裝的二維網(wǎng)絡(luò)的形狀變形。

85.Observation of Short-Period Helical Spin Order and Magnetic Transition in a Nonchiral Centrosymmetric Helimagnet.
非手性中心對(duì)稱螺旋磁體中短周期螺旋自旋順序和磁躍遷的觀察。

86.Molecular Engineering Enables TADF Emitters Well Suitable for Non-Doped OLEDs with External Quantum Efficiency of Nearly 30%.
分子工程使 TADF 發(fā)射器非常適合非摻雜 OLED,外部量子效率接近 30%。

87.Sn-Doped Black Phosphorene for Enhancing the Selectivity of Nitrogen Electroreduction to Ammonia.
摻雜錫的黑磷烯用于增強(qiáng)氮電還原氨的選擇性。

88.Insoluble Naphthoquinone-Derived Molecular Cathode for High-Performance Lithium Organic Battery.
用于高性能鋰有機(jī)電池的不溶性萘醌衍生分子陰極。

89.A Skin-Like Pressure- and Vibration-Sensitive Tactile Sensor Based on Polyacrylamide/Silk Fibroin Elastomer.
基于聚丙烯酰胺/絲素蛋白彈性體的類皮膚壓力和振動(dòng)敏感觸覺傳感器。

90.Drive High Power UVC-LED Wafer into Low-Cost 4-Inch Era: Effect of Strain Modulation.
將高功率 UVC-LED 晶圓帶入低成本 4 英寸時(shí)代:應(yīng)變調(diào)制的效果。

91.Pseudocapacitive Co-Free Trimetallic Ni-Zn-Mn Perovskite Fluorides Enable Fast-Rechargeable Zn-Based Aqueous Batteries.
贗電容性無(wú)鈷三金屬 Ni-Zn-Mn 鈣鈦礦氟化物可實(shí)現(xiàn)快速可充電鋅基水系電池。

92.One-Interlayer-Twisted Multilayer MoS2 Moiré Superlattices.
單層扭曲多層MoS2莫爾超晶格。

93.Integrated Water and Thermal Managements in Bioinspired Hierarchical MXene Aerogels for Highly Efficient Solar-Powered Water Evaporation.
仿生分層 MXene 氣凝膠中的集成水和熱管理,用于高效太陽(yáng)能水蒸發(fā)。

94.Symmetrical Acceptor–Donor–Acceptor Molecule as a Versatile Defect Passivation Agent toward Efficient FA0.85MA0.15PbI3 Perovskite Solar Cells.
對(duì)稱受體-供體-受體分子作為高效 FA0.85MA0.15PbI3 鈣鈦礦太陽(yáng)能電池的多功能缺陷鈍化劑。

95.Large-Area Printing of Ferroelectric Surface and Super-Domain for Solar Water Splitting.
用于太陽(yáng)能水分解的鐵電表面和超級(jí)域的大面積印刷。

96.Polydimethylsiloxane-Silane Synergy enables Dropwise Condensation of Low Surface Tension Liquids.
聚二甲基硅氧烷-硅烷協(xié)同作用可實(shí)現(xiàn)低表面張力液體的滴狀縮合。

97.A “Three-Region” Configuration for Enhanced Electrochemical Kinetics and High-Areal Capacity Lithium–Sulfur Batteries.
用于增強(qiáng)電化學(xué)動(dòng)力學(xué)和高面積容量鋰硫電池的“三區(qū)”配置。

98.Quantitative Determination of Native Point-Defect Concentrations at the ppm Level in Un-Doped BaSnO3 Thin Films.
定量測(cè)定未摻雜 BaSnO3 薄膜中 ppm 級(jí)的原生點(diǎn)缺陷濃度。

99.Polaronic Conductivity in Cr2Ge2Te6 Single Crystals.
Cr2Ge2Te6 單晶中的極化電導(dǎo)率。

100.Recording Messages on Nonplanar Objects by Cryogenic Electron-Beam Writing.
通過(guò)低溫電子束寫入在非平面物體上記錄消息。

============================
由于專欄圖片數(shù)量限制,關(guān)注我的個(gè)人公眾號(hào)“遠(yuǎn)夢(mèng)研”查看更多。