最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網(wǎng) 會(huì)員登陸 & 注冊(cè)

復(fù)旦大學(xué)謝啟鴻高等代數(shù)每周一題[2021A04]參考解答

2021-10-27 18:12 作者:CharlesMa0606  | 我要投稿

本文是本人給出的2021年復(fù)旦大學(xué)謝啟鴻高等代數(shù)的每周一題[問題2021A04]的解答

題目來自于復(fù)旦大學(xué)謝啟鴻教授在他的博客提供的每周一題練習(xí)

(鏈接:https://www.cnblogs.com/torsor/p/15329047.html)

本文僅供學(xué)習(xí)交流,如有錯(cuò)誤懇請(qǐng)指正!

[問題2021A04]求下列行列式的值:

%5Cleft%7CA%5Cright%7C%3D%5Cleft%7C%5Cbegin%7Bmatrix%7Da_1%5E2%2Bn-1%26a_1%2Ba_2%26a_1%2Ba_3%26%5Ccdots%26a_1%2Ba_n%5C%5Ca_1%2Ba_2%26a_2%5E2%2B1%261%26%5Ccdots%261%5C%5Ca_1%2Ba_3%261%26a_3%5E2%2B1%26%5Ccdots%261%5C%5C%5Cvdots%26%5Cvdots%26%5Cvdots%26%5C%20%26%5Cvdots%5C%5Ca_1%2Ba_n%261%261%26%5Ccdots%26a_n%5E2%2B1%5C%5C%5Cend%7Bmatrix%7D%5Cright%7C

(解法一,拆分、降階公式,計(jì)算量較大)

1°當(dāng)a_i%5Cneq0%2C%5Cforall2%5Cle%20i%5Cle%20n時(shí)我們對(duì)%7CA%7C的第一列進(jìn)行拆分,有:

%5Cleft%7CA%5Cright%7C%3D%5Cleft%7C%5Cbegin%7Bmatrix%7Da_1%5E2%26a_1%2Ba_2%26a_1%2Ba_3%26%5Ccdots%26a_1%2Ba_n%5C%5Ca_1%2Ba_2%26a_2%5E2%2B1%261%26%5Ccdots%261%5C%5Ca_1%2Ba_3%261%26a_3%5E2%2B1%26%5Ccdots%261%5C%5C%5Cvdots%26%5Cvdots%26%5Cvdots%26%5C%20%26%5Cvdots%5C%5Ca_1%2Ba_n%261%261%26%5Ccdots%26a_n%5E2%2B1%5C%5C%5Cend%7Bmatrix%7D%5Cright%7C%2B%5Cleft%7C%5Cbegin%7Bmatrix%7Dn-1%26a_1%2Ba_2%26a_1%2Ba_3%26%5Ccdots%26a_1%2Ba_n%5C%5C0%26a_2%5E2%2B1%261%26%5Ccdots%261%5C%5C0%261%26a_3%5E2%2B1%26%5Ccdots%261%5C%5C%5Cvdots%26%5Cvdots%26%5Cvdots%26%5C%20%26%5Cvdots%5C%5C0%261%261%26%5Ccdots%26a_n%5E2%2B1%5C%5C%5Cend%7Bmatrix%7D%5Cright%7C.

先計(jì)算前一項(xiàng),將其記作%7CB%7C,則:

%5Cleft%7CB%5Cright%7C%3D%5Cleft%7C%5Cleft(%5Cbegin%7Bmatrix%7Da_1%5E2%26a_1%2Ba_2%26a_1%2Ba_3%26%5Ccdots%26a_1%2Ba_n%5C%5Ca_1%2Ba_2%26a_2%5E2%260%26%5Ccdots%260%5C%5Ca_1%2Ba_3%260%26a_3%5E2%26%5Ccdots%260%5C%5C%5Cvdots%26%5Cvdots%26%5Cvdots%26%5C%20%26%5Cvdots%5C%5Ca_1%2Ba_n%260%260%26%5Ccdots%26a_n%5E2%5C%5C%5Cend%7Bmatrix%7D%5Cright)-%5Cleft(%5Cbegin%7Bmatrix%7D0%5C%5C1%5C%5C1%5C%5C%5Cvdots%5C%5C1%5C%5C%5Cend%7Bmatrix%7D%5Cright)%5Cleft(-I_1%5Cright)%5Cleft(%5Cbegin%7Bmatrix%7D0%261%261%26%5Ccdots%261%5C%5C%5Cend%7Bmatrix%7D%5Cright)%5Cright%7C

%3D%5Cfrac%7B1%7D%7B%5Cleft%7C-I_1%5Cright%7C%7D%5Cleft%7C%5Cbegin%7Bmatrix%7Da_1%5E2%26a_1%2Ba_2%26a_1%2Ba_3%26%5Ccdots%26a_1%2Ba_n%5C%5Ca_1%2Ba_2%26a_2%5E2%260%26%5Ccdots%260%5C%5Ca_1%2Ba_3%260%26a_3%5E2%26%5Ccdots%260%5C%5C%5Cvdots%26%5Cvdots%26%5Cvdots%26%5C%20%26%5Cvdots%5C%5Ca_1%2Ba_n%260%260%26%5Ccdots%26a_n%5E2%5C%5C%5Cend%7Bmatrix%7D%5Cright%7C%5Cleft%7C-I_1-%5Cleft(%5Cbegin%7Bmatrix%7D0%261%261%26%5Ccdots%261%5C%5C%5Cend%7Bmatrix%7D%5Cright)%5Cleft(%5Cast%5Cright)%5E%7B-1%7D%5Cleft(%5Cbegin%7Bmatrix%7D0%5C%5C1%5C%5C1%5C%5C%5Cvdots%5C%5C1%5C%5C%5Cend%7Bmatrix%7D%5Cright)%5Cright%7C

而利用遞推法可以求出

%5Cleft%7C%5Cbegin%7Bmatrix%7Da_1%5E2%26a_1%2Ba_2%26a_1%2Ba_3%26%5Ccdots%26a_1%2Ba_n%5C%5Ca_1%2Ba_2%26a_2%5E2%260%26%5Ccdots%260%5C%5Ca_1%2Ba_3%260%26a_3%5E2%26%5Ccdots%260%5C%5C%5Cvdots%26%5Cvdots%26%5Cvdots%26%5C%20%26%5Cvdots%5C%5Ca_1%2Ba_n%260%260%26%5Ccdots%26a_n%5E2%5C%5C%5Cend%7Bmatrix%7D%5Cright%7C%3Da_1%5E2%5Ccdots%20a_n%5E2-%5Csum_%7Bi%3D2%7D%5E%7Bn%7D%7Ba_2%5E2%5Ccdots%5Cwidehat%7Ba_i%5E2%7D%5Cleft(a_1%2Ba_i%5Cright)%5E2%5Ccdots%20a_n%5E2%7D.

注意到只需要求出逆陣的后n-1行、后n-1列元素的和即可,從而

%5Cleft%7CB%5Cright%7C%3D%5Cleft(a_1%5E2-%5Csum_%7Bi%3D2%7D%5E%7Bn%7D%5Cfrac%7B%5Cleft(a_1%2Ba_i%5Cright)%5E2%7D%7Ba_i%5E2%7D%5Cright)%5Cleft(1%2B%5Csum_%7Bi%3D2%7D%5E%7Bn%7D%5Cfrac%7B1%7D%7Ba_i%5E2%7D%2B%5Cfrac%7B%5Cleft(%5Csum_%7Bi%3D2%7D%5E%7Bn%7D%5Cfrac%7Ba_1%2Ba_i%7D%7Ba_i%5E2%7D%5Cright)%5E2%7D%7Ba_1%5E2-%5Csum_%7Bi%3D2%7D%5E%7Bn%7D%5Cfrac%7B%5Cleft(a_1%2Ba_i%5Cright)%5E2%7D%7Ba_i%5E2%7D%7D%5Cright)%5Cprod_%7Bi%3D2%7D%5E%7Bn%7Da_i%5E2

%3D%5Cleft%5B%5Cleft(a_1%5E2-%5Csum_%7Bi%3D2%7D%5E%7Bn%7D%5Cfrac%7B%5Cleft(a_1%2Ba_i%5Cright)%5E2%7D%7Ba_i%5E2%7D%5Cright)%5Cleft(1%2B%5Csum_%7Bi%3D2%7D%5E%7Bn%7D%5Cfrac%7B1%7D%7Ba_i%5E2%7D%5Cright)%2B%5Cleft(%5Csum_%7Bi%3D2%7D%5E%7Bn%7D%5Cfrac%7Ba_1%2Ba_i%7D%7Ba_i%5E2%7D%5Cright)%5E2%5Cright%5D%5Cprod_%7Bi%3D2%7D%5E%7Bn%7Da_i%5E2

%3D%5Cleft%5Ba_1%5E2-2a_1%5Csum_%7Bi%3D2%7D%5E%7Bn%7D%5Cfrac%7B1%7D%7Ba_i%7D-%5Cleft(n-1%5Cright)-%5Cleft(%5Cleft(n-1%5Cright)%5Csum_%7Bi%3D2%7D%5E%7Bn%7D%5Cfrac%7B1%7D%7Ba_i%5E2%7D%5Cright)%2B%5Cleft(%5Csum_%7Bi%3D2%7D%5E%7Bn%7D%5Cfrac%7B1%7D%7Ba_i%7D%5Cright)%5E2%5Cright%5D%5Cprod_%7Bi%3D2%7D%5E%7Bn%7Da_i%5E2

%3D%5Cleft%5B%5Cleft(a_1-%5Csum_%7Bi%3D2%7D%5E%7Bn%7D%5Cfrac%7B1%7D%7Ba_i%7D%5Cright)%5E2-%5Cleft(n-1%5Cright)%5Cleft(1%2B%5Csum_%7Bi%3D2%7D%5E%7Bn%7D%5Cfrac%7B1%7D%7Ba_i%5E2%7D%5Cright)%5Cright%5D%5Cprod_%7Bi%3D2%7D%5E%7Bn%7Da_i%5E2

再計(jì)算后一項(xiàng),將其記作%7CC%7C,有:

%5Cleft%7CC%5Cright%7C%3D%5Cleft%7C%5Cbegin%7Bmatrix%7Dn-1%26a_1%2Ba_2%26a_1%2Ba_3%26%5Ccdots%26a_1%2Ba_n%5C%5C0%26a_2%5E2%2B1%261%26%5Ccdots%261%5C%5C0%261%26a_3%5E2%2B1%26%5Ccdots%261%5C%5C%5Cvdots%26%5Cvdots%26%5Cvdots%26%5C%20%26%5Cvdots%5C%5C0%261%261%26%5Ccdots%26a_n%5E2%2B1%5C%5C%5Cend%7Bmatrix%7D%5Cright%7C%3D%5Cleft(n-1%5Cright)%5Cleft%7C%5Cbegin%7Bmatrix%7Da_2%5E2%2B1%261%261%26%5Ccdots%261%5C%5C1%26a_3%5E2%2B1%261%26%5Ccdots%261%5C%5C1%261%26a_3%5E2%2B1%26%5Ccdots%261%5C%5C%5Cvdots%26%5Cvdots%26%5Cvdots%26%5C%20%26%5Cvdots%5C%5C1%261%261%26%5Ccdots%26a_n%5E2%2B1%5C%5C%5Cend%7Bmatrix%7D%5Cright%7C

%3D%5Cleft(n-1%5Cright)%5Cleft(%5Cleft%7C%5Cbegin%7Bmatrix%7Da_2%5E2%260%260%26%5Ccdots%260%5C%5C0%26a_3%5E2%260%26%5Ccdots%260%5C%5C0%260%26a_4%5E2%26%5Ccdots%260%5C%5C%5Cvdots%26%5Cvdots%26%5Cvdots%26%5C%20%26%5Cvdots%5C%5C0%260%260%26%5Ccdots%26a_n%5E2%5C%5C%5Cend%7Bmatrix%7D%5Cright%7C%2B%5Csum_%7Bi%2Cj%3D1%7D%5E%7Bn%7DC_%7Bij%7D%5Cright)%3D%5Cleft(n-1%5Cright)%5Cleft(1%2B%5Csum_%7Bi%3D2%7D%5E%7Bn%7D%5Cfrac%7B1%7D%7Ba_i%5E2%7D%5Cright)%5Cprod_%7Bi%3D2%7D%5E%7Bn%7Da_i%5E2

從而

%5Cleft%7CA%5Cright%7C%3D%5Cleft(a_1-%5Csum_%7Bi%3D2%7D%5E%7Bn%7D%5Cfrac%7B1%7D%7Ba_i%7D%5Cright)%5E2%5Cprod_%7Bi%3D2%7D%5E%7Bn%7Da_i%5E2.%5Cleft(a_i%5Cneq0%5Cright)

2°當(dāng)有且只有一個(gè)a_i%3D0%2C2%5Cle%20i%5Cle%20n時(shí)我們可以做行對(duì)換和列對(duì)換把它換到右下角,從而不妨只研究a_n%3D0的情況,其余情況同理,我們有:

%5Cleft%7CA%5Cright%7C%3D%5Cleft%7C%5Cbegin%7Bmatrix%7Da_1%5E2%2Bn-1%26a_1%2Ba_2%26a_1%2Ba_3%26%5Ccdots%26a_1%5C%5Ca_1%2Ba_2%26a_2%5E2%2B1%261%26%5Ccdots%261%5C%5Ca_1%2Ba_3%261%26a_3%5E2%2B1%26%5Ccdots%261%5C%5C%5Cvdots%26%5Cvdots%26%5Cvdots%26%5C%20%26%5Cvdots%5C%5Ca_1%261%261%26%5Ccdots%261%5C%5C%5Cend%7Bmatrix%7D%5Cright%7C%3D%5Cleft%7C%5Cbegin%7Bmatrix%7Dn-1%26a_2%26a_3%26%5Ccdots%26a_%7Bn-1%7D%5C%5Ca_2%26a_2%5E2%260%26%5Ccdots%260%5C%5Ca_3%260%26a_3%5E2%26%5Ccdots%260%5C%5C%5Cvdots%26%5Cvdots%26%5Cvdots%26%5C%20%26%5Cvdots%5C%5Ca_%7Bn-1%7D%260%260%26%5Ccdots%26a_%7Bn-1%7D%5E2%5C%5C%5Cend%7Bmatrix%7D%5Cright%7C

%3D%5Cprod_%7Bi%3D2%7D%5E%7Bn-1%7Da_i%5E2%5Cleft%7C%5Cbegin%7Bmatrix%7Dn-1%261%261%26%5Ccdots%261%5C%5C1%261%260%26%5Ccdots%260%5C%5C1%260%261%26%5Ccdots%260%5C%5C%5Cvdots%26%5Cvdots%26%5Cvdots%26%5C%20%26%5Cvdots%5C%5C1%260%260%26%5Ccdots%261%5C%5C%5Cend%7Bmatrix%7D%5Cright%7C%3D%5Cprod_%7Bi%3D2%7D%5E%7Bn-1%7Da_i%5E2%5Cleft%7C%5Cbegin%7Bmatrix%7D1%261%261%26%5Ccdots%261%5C%5C0%261%260%26%5Ccdots%260%5C%5C0%260%261%26%5Ccdots%260%5C%5C%5Cvdots%26%5Cvdots%26%5Cvdots%26%5C%20%26%5Cvdots%5C%5C0%260%260%26%5Ccdots%261%5C%5C%5Cend%7Bmatrix%7D%5Cright%7C%3D%5Cprod_%7Bi%3D2%7D%5E%7Bn-1%7Da_i%5E2

3°當(dāng)有不少于兩個(gè)a_i%3D0%2C2%5Cle%20i%5Cle%20n時(shí),有兩行相同,從而%7CA%7C%3D0.

%5BQ.E.D%5D

(解法二,矩陣乘法,計(jì)算量非常小,但較難想到)

注意到

A%3D%5Cleft(%5Cbegin%7Bmatrix%7Da_1%5E2%2Bn-1%26a_1%2Ba_2%26a_1%2Ba_3%26%5Ccdots%26a_1%2Ba_n%5C%5Ca_1%2Ba_2%26a_2%5E2%2B1%261%26%5Ccdots%261%5C%5Ca_1%2Ba_3%261%26a_3%5E2%2B1%26%5Ccdots%261%5C%5C%5Cvdots%26%5Cvdots%26%5Cvdots%26%5C%20%26%5Cvdots%5C%5Ca_1%2Ba_n%261%261%26%5Ccdots%26a_n%5E2%2B1%5C%5C%5Cend%7Bmatrix%7D%5Cright)%3D%5Cleft(%5Cbegin%7Bmatrix%7Da_1%261%261%26%5Ccdots%261%5C%5C1%26a_2%260%26%5Ccdots%260%5C%5C1%260%26a_3%26%5Ccdots%260%5C%5C%5Cvdots%26%5Cvdots%26%5Cvdots%26%5C%20%26%5Cvdots%5C%5C1%260%260%26%5Ccdots%26a_n%5C%5C%5Cend%7Bmatrix%7D%5Cright)%5E2

從而由爪形行列式的相關(guān)結(jié)論,立即得到

%5Cleft%7CA%5Cright%7C%3D%5Cleft(%5Cprod_%7Bi%3D1%7D%5E%7Bn%7Da_i-%5Csum_%7Bk%3D2%7D%5E%7Bn%7D%7Ba_2%5Ccdots%5Cwidehat%7Ba_k%7D%5Ccdots%20a_n%7D%5Cright)%5E2%3D%5Cleft(a_1-%5Csum_%7Bi%3D2%7D%5E%7Bn%7D%5Cfrac%7B1%7D%7Ba_i%7D%5Cright)%5E2%5Cprod_%7Bi%3D2%7D%5E%7Bn%7Da_i%5E2.

%5BQ.E.D%5D

(1)本專欄給出了本題的拆分、降階公式和矩陣乘法的兩種做法,其中降階公式法較考驗(yàn)計(jì)算能力,同時(shí)思維含量也不低,可以稱得上是硬核做法;矩陣乘法的做法非常巧妙,需要極強(qiáng)的創(chuàng)造力和觀察力,非常有靈性.

(2)文末附上圖片格式的解法,有需要的讀者可以自行取用,僅供學(xué)習(xí)交流

問題2021A04-第一頁(yè)
問題2021A04-第二頁(yè)



復(fù)旦大學(xué)謝啟鴻高等代數(shù)每周一題[2021A04]參考解答的評(píng)論 (共 條)

分享到微博請(qǐng)遵守國(guó)家法律
兴安县| 沙湾县| 福安市| 新化县| 怀安县| 兰溪市| 吉首市| 宁蒗| 永靖县| 左贡县| 九龙坡区| 湘潭市| 安福县| 阳春市| 来安县| 新乡县| 吉林市| 宣武区| 晴隆县| 江都市| 乐清市| 龙游县| 建昌县| 牟定县| 濉溪县| 武义县| 石狮市| 大安市| 巧家县| 青冈县| 曲阳县| 永康市| 深圳市| 景谷| 枞阳县| 郎溪县| 怀来县| 五峰| 泰和县| 临安市| 屏边|