最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網(wǎng) 會員登陸 & 注冊

Prime Dream(2)——素數(shù)定理的推論

2022-02-04 17:27 作者:子瞻Louis  | 我要投稿

專欄文集:《雜文集》《數(shù)學(xué)分析》

本系列文集:《Prime Dream》

簡概

自然數(shù)的乘法賦予了自然數(shù)集一種特殊的結(jié)構(gòu),從而誕生了整除這一關(guān)系,而有一類數(shù),無法找到除了1與它本身外能夠整除它的整數(shù),這類數(shù)就叫做素數(shù)(prime?number)質(zhì)數(shù)。它們的分布是十分不規(guī)則的,因此對它的研究可以說是十分艱難的,從幾千年前的歐幾里得,到如今,有關(guān)素數(shù)的難題出現(xiàn)了許許多多,諸如哥德巴赫猜想,孿生素數(shù)猜想,世界七大難題之一的黎曼假設(shè)等,盡管如此,數(shù)學(xué)家們也始終執(zhí)著地追求著看清這其中的奧秘

之前有一期專欄中有提到過Euclid定理——素數(shù)有無窮多個,即

%5Cpi(x)%5Crightarrow%5Cinfty%20%5Cqquad%20(x%5Crightarrow%5Cinfty)

這也令對素數(shù)的研究更加復(fù)雜了,畢竟如果是有限個素數(shù)那研究起來多方便。實際上最大的困難之處還是在于素數(shù)的分布太雜亂了,要得到一個精確的公式是十分不容易的。本期只展示素數(shù)定理的等價形式及推論

Tchebyshev的兩個函數(shù)與素數(shù)定理

首先從切比雪夫的兩個函數(shù)出發(fā):

%5Cvartheta(x)%3D%5Csum_%7Bn%5Cle%20x%7D%5Clog%20p

%5Cpsi(x)%3D%5Csum_%7Bn%5Cle%20x%7D%5CLambda(n)

利用素數(shù)示性函數(shù):

%5Cmathrm%20p(n)%3D%5Cleft%5C%7B%20%5Cbegin%7Barray%7D%7Brcl%7D%0A1%20%2C%26%20n%5Cin%5Cmathbb%20P%20%5C%5C%200%2C%20%20%26%20n%5Cnotin%5Cmathbb%20P%0A%5Cend%7Barray%7D%5Cright.

發(fā)現(xiàn)若將n取不大于x的所有整數(shù)并求和剛好就是不大于x的素數(shù)個數(shù),即

%5Cpi(x)%3D%5Csum_%7Bn%5Cle%20x%7D%5Cmathrm%20p(n)

%5CRightarrow%20%5Cmathrm%20p(n)%3D%5Cpi(n)-%5Cpi(n-1)

將其代入到Tchebyshev?theta函數(shù)中,因為當%5Cdelta%3E0時,在%5B2-%5Cdelta%2C2%5D的范圍內(nèi)沒有素數(shù),所以可將求和域改為2-δ到x,利用Able求和公式,可得

%5Cbegin%7Baligned%7D%5Cvartheta(x)%26%3D%5Csum_%7B2-%5Cdelta%3Cn%5Cle%20x%7D%5Cmathrm%20p(n)%5Clog%20n%5C%5C%26%3D%5Cpi(x)%5Clog%20x-%5Cpi(2-%5Cdelta)%5Clog(2-%5Cdelta)-%5Cint_%7B1-%5Cdelta%7D%5Ex%5Cpi(t)%5Cmathrm%20d%5Clog%20t%5C%5C%26%3D%5Cpi(x)%5Clog%20x-%5Cint_%7B2-%5Cdelta%7D%5Ex%5Cfrac%7B%5Cpi(t)%7Dt%5Cmathrm%20dt%5Cend%7Baligned%7D

接下來令%5Cdelta%5Crightarrow0%5E%2B,得到

%5Cpi(x)%5Clog%20x%3D%5Cvartheta(x)%2B%5Cint_%7B2%5E-%7D%5Ex%5Cfrac%7B%5Cpi(t)%7D%7Bt%7D%5Cmathrm%20dt

為了方便采用記號?%5Cint_%7B2%5E-%7D%5Ex%3A%3D%5Clim_%7B%5Cdelta%5Cto0%5E%2B%7D%5Cint_%7B2-%5Cdelta%7D%5Ex

  • #)%5Cfrac%7B%5Cpi(x)%5Clog%20x%7Dx%3D%5Cfrac%7B%5Cvartheta(x)%7Dx%2B%5Cfrac1x%5Cint_%7B2%5E-%7D%5Ex%5Cfrac%7B%5Cpi(t)%7D%7Bt%7D%5Cmathrm%20dt

因此可以通過Tchebyshev theta函數(shù)間接對素數(shù)分布進行研究

素數(shù)定理(prime?number?theorem)描述的正是

  • 1)%5Clim_%7Bx%5Cto%5Cinfty%7D%5Cfrac%7B%5Cpi(x)%5Clog%20x%7D%7Bx%7D%3D1%5Cqquad%5Cleft(%5Cpi(x)%5Csim%5Cfrac%7Bx%7D%7B%5Clog%20x%7D%5Cright)

當然這只是它最簡單的形式。我們可以由此推出與它等價的兩種形式

從#式出發(fā),上一期專欄中我們證明了存在兩個常數(shù)C_1%2CC_2,使得

C_1%5Cle%5Cfrac%7B%5Cpi(x)%5Clog%20x%7D%7Bx%7D%5Cle%20C_2

從而有

%5Cfrac%7BC_1%7D%7B%5Clog%20x%7D%5Cle%5Cfrac%7B%5Cpi(x)%7D%7Bx%7D%5Cle%20%5Cfrac%7BC_2%7D%7B%5Clog%20x%7D

于是#)式中的積分項

%5Cfrac%7BC_1%7Dx%5Cint_2%5Ex%5Cfrac1%7B%5Clog%20t%7D%5Cmathrm%20dt%5Cle%5Cfrac1x%5Cint_2%5Ex%5Cfrac%7B%5Cpi(t)%7D%7Bt%7D%5Cmathrm%20dt%5Cle%5Cfrac%7BC_2%7Dx%5Cint_2%5Ex%5Cfrac1%7B%5Clog%20t%7D%5Cmathrm%20dt

而又有

0%3C%5Cfrac%7BC%7Dx%5Cint_2%5Ex%5Cfrac1%7B%5Clog%20t%7D%5Cmathrm%20dt%3D%5Cfrac%20C%7B%5Clog%20x%7D-%5Cfrac%20%7B2C%7D%7Bx%5Clog2%7D%2B%5Cfrac%20Cx%5Cint_2%5Ex%5Cfrac%7B%5Cmathrm%20dt%7D%7B%5Clog%5E2t%7D%5Cxrightarrow%7Bx%5Cto%5Cinfty%7D0

所以可得以下等式:

  • 2)%5Clim_%7Bx%5Cto%5Cinfty%7D%5Cfrac%7B%5Cpi(x)%5Clog%20x%7D%7Bx%7D%3D%5Clim_%7Bx%5Cto%5Cinfty%7D%5Cfrac%7B%5Cvartheta(x)%7D%7Bx%7D

若能證明右側(cè)的極限為1,則就能間接得到素數(shù)定理,至此就得到了素數(shù)定理的一個等價表述

現(xiàn)在將注意力轉(zhuǎn)到Tchebyshev psi函數(shù)上,它是對不超過x的素數(shù)的乘方求和,

%5Cpsi(x)%3D%5Csum_%7Bn%5Cle%20x%7D%5CLambda(n)%3D%5Csum_%7Bm%3D1%7D%5E%5Cinfty%5Csum_%7Bp%5Em%5Cle%20x%7D%5Clog%20p

因為不超過x的p乘方總是有限的,所以最右邊是一有限和,不難將它與theta函數(shù)聯(lián)系起來

%5Cpsi(x)%3D%5Csum_%7Bm%3D1%7D%5E%5Cinfty%5Csum_%7Bp%5Cle%5Csqrt%5Bm%5D%20x%7D%5Clog%20p%3D%5Csum_%7Bm%3D1%7D%5E%5Cinfty%5Cvartheta(%5Csqrt%5Bm%5Dx)

注意到%5Csqrt%5Bm%5Dx%3C2m%3E%5Clog_2x時外層的求和是空的,將這些空的去掉,得到

%5Cpsi(x)%3D%5Csum_%7Bm%5Cle%5Clog_2x%7D%5Cvartheta(%5Csqrt%5Bm%5Dx)

下面來康康這兩個函數(shù)的差吧

0%5Cle%5Cpsi(x)-%5Cvartheta(x)%3D%5Csum_%7B2%5Cle%20m%5Cle%5Clog_2x%7D%5Cvartheta(%5Csqrt%5Bm%5Dx)

根據(jù)Tchebyshev theta函數(shù)的定義,又可得對m%5Cge2,

%5Cvartheta(%5Csqrt%5Bm%5Dx)%3D%5Csum_%7Bp%5Cle%5Csqrt%5Bm%5Dx%7D%5Clog%20p%5Cle%5Csqrt%5Bm%5Dx%5Clog%5Csqrt%5Bm%5Dx%5Cle%5Csqrt%20x%5Clog%20x

%5Cbegin%7Baligned%7D%5CRightarrow%20%5Cpsi(x)-%5Cvartheta(x)%26%5Cle%5Csum_%7B2%5Cle%20m%5Cle%5Clog_2x%7D%5Csqrt%20x%5Clog%20x%5C%5C%26%5Cle%5Csqrt%20x%5Clog%20x%5Clog_2x%3D%5Cfrac%7B%5Csqrt%20x%5Clog%5E2x%7D%7B%5Clog2%7D%5Cend%7Baligned%7D

經(jīng)過上面這些粗略的放縮,得到

0%5Cle%5Cfrac%7B%5Cpsi(x)%7Dx-%5Cfrac%7B%5Cvartheta(x)%7Dx%5Cle%5Cfrac%7B%5Clog%5E2x%7D%7B%5Csqrt%20x%5Clog2%7D

當x足夠大時他們的差越來越小且最終會趨于0,因此上訴不等式就是告訴了我們

  • 3)%5Clim_%7Bx%5Cto%5Cinfty%7D%5Cfrac%7B%5Cpsi(x)%7Dx%3D%5Clim_%7Bx%5Cto%5Cinfty%7D%5Cfrac%7B%5Cvartheta(x)%7Dx

再根據(jù)2)式就能得到素數(shù)定理的另一等價表述,

素數(shù)定理的推論

假設(shè)素數(shù)定理已經(jīng)成立,對1)式取自然對數(shù),得到

%5Clim_%7Bx%5Cto%5Cinfty%7D(%5Clog%5Cpi(x)%2B%5Clog%5Clog%20x-%5Clog%20x)%3D0

再變一下,就是

%5Clim_%7Bx%5Cto%5Cinfty%7D%5Cleft%5B%5Clog%20x%5Cleft(%5Cfrac%7B%5Clog%5Cpi(x)%7D%7B%5Clog%20x%7D%2B%5Cfrac%7B%5Clog%20%5Clog%20x%7D%7B%5Clog%20x%7D-1%5Cright)%5Cright%5D%3D0

用epsilon語言來說就是%5Cexists%20X%5Cin%5Cmathbb%20R_%2B%2Cx%3EX時,%5Cforall%20%5Cepsilon%3E0

%5Cleft%7C%5Clog%20x%5Cleft(%5Cfrac%7B%5Clog%5Cpi(x)%7D%7B%5Clog%20x%7D%2B%5Cfrac%7B%5Clog%20%5Clog%20x%7D%7B%5Clog%20x%7D-1%5Cright)%5Cright%7C%3C%5Cepsilon

%5CRightarrow%5Cleft%7C%5Cfrac%7B%5Clog%5Cpi(x)%7D%7B%5Clog%20x%7D%2B%5Cfrac%7B%5Clog%20%5Clog%20x%7D%7B%5Clog%20x%7D-1%5Cright%7C%3C%5Cfrac%5Cepsilon%7B%5Clog%20x%7D

所以由此可得

%5Clim_%7Bx%5Cto%5Cinfty%7D%5Cleft(%5Cfrac%7B%5Clog%5Cpi(x)%7D%7B%5Clog%20x%7D%2B%5Cfrac%7B%5Clog%20%5Clog%20x%7D%7B%5Clog%20x%7D-1%5Cright)%3D0

又因為

%5Cfrac%7B%5Clog%5Clog%20x%7D%7B%5Clog%20x%7D%5Cxrightarrow%7Bx%5Crightarrow%5Cinfty%7D0

所以可以得到

  • 4)%5Clim_%7Bx%5Cto%5Cinfty%7D%5Cfrac%7B%5Clog%5Cpi(x)%7D%7B%5Clog%20x%7D%3D1

這雖然有些許不可思議——不大于給定數(shù)的素數(shù)個數(shù)總是遠小于這個數(shù)的,但是仔細想想因為對數(shù)函數(shù)發(fā)散的速度很慢,以至于彌補了它們之間的差距,所以造成它們的比值極限為1

結(jié)合4)式,可知素數(shù)定義亦等價于

  • 5)%5Clim_%7Bx%5Cto%5Cinfty%7D%5Cfrac%7B%5Cpi(x)%5Clog%5Cpi(x)%7D%7Bx%7D%3D1

在上式中令x沿素數(shù)集趨向無窮,即

%5Clim_%7B%5Cmathbb%20P%5Cni%20x%5Cto%5Cinfty%7D%5Cfrac%7B%5Cpi(x)%5Clog%5Cpi(x)%7D%7Bx%7D%3D1

設(shè)x%3Dp_n為第n個素數(shù),而p_n%5Cto%5Cinfty%5CRightarrow%20n%5Cto%5Cinfty,且又有%5Cpi(p_n)%3Dn,代入上式即得

  • 6)%5Clim_%7Bn%5Cto%5Cinfty%7D%5Cfrac%7Bn%5Clog%20n%7D%7Bp_n%7D%3D1

素數(shù)定理的更精確形式

利用小o符號,由

%5Clim_%7Bx%5Cto%5Cinfty%7D%5Cfrac%7B%5Cvartheta(x)%7Dx%3D1

可以寫出

%5Cvartheta(x)%3Dx%2Bo(x)%2C%20%5Cquad%20x%5Cto%5Cinfty

又由Abel求和公式,有

%5Cbegin%7Baligned%7D%5Cpi(x)%26%3D%5Csum_%7Bp%5Cle%20x%7D%5Cfrac%7B%5Clog%20p%7D%7B%5Clog%20p%7D%5C%5C%26%3D%5Cfrac%7B%5Cvartheta(x)%7D%7B%5Clog%20x%7D%2B%5Cint_%7B2%5E-%7D%5Ex%5Cfrac%7B%5Cvartheta(t)%7D%7Bt%5Clog%5E2%20t%7D%5Cmathrm%20dt%5Cend%7Baligned%7D

由此可得

%5Cpi(x)%3D%5Cfrac%7Bx%7D%7B%5Clog%20x%7D%2B%5Cint_%7B2%7D%5Ex%5Cfrac%7B%5Cmathrm%20dt%7D%7B%5Clog%5E2t%7D%2Bo%5Cleft(%5Cfrac%20x%7B%5Clog%20x%7D%5Cright)

又由分部積分得

%5Cbegin%7Baligned%7D%5Cint_%7B2%7D%5Ex%5Cfrac%7B%5Cmathrm%20dt%7D%7B%5Clog%5E2t%7D%26%3D-%5Cint_%7B2%7D%5Ext%5Cmathrm%20d%5Cfrac1%7B%5Clog%20t%7D%5C%5C%26%3D%5Cfrac2%7B%5Clog2%7D-%5Cfrac%20x%7B%5Clog%20x%7D%2B%5Cint_%7B2%7D%5Ex%5Cfrac%7B%5Cmathrm%20dt%7D%7B%5Clog%20t%7D%5Cend%7Baligned%7D

記?%5Cmathrm%7Bli%7D(x)%3D%5Cint_2%5Ex%5Cfrac%7B%5Cmathrm%20dt%7D%7B%5Clog%20t%7D?,則

  • 7)%5Cpi(x)%3D%5Cmathrm%7Bli%7D(x)%2Bo%5Cleft(%5Cfrac%20x%7B%5Clog%20x%7D%5Cright)%2C%5Cquad%20x%5Cto%5Cinfty

一些情況下,使用下限為0的積分是非常方便的,因此引入

%5Cmathrm%7BLi%7D(x)%3D%5Cint_0%5Ex%5Cfrac%7B%5Cmathrm%20dt%7D%7B%5Clog%20t%7D%3D%5Cmathrm%7Bli%7D(x)%2B%5Cmathrm%7BLi%7D(2)

其中?%5Cmathrm%7BLi%7D(2)?取Cauchy主值,

%5Cmathrm%7BLi%7D(2)%3D%5Clim_%7B%5Cdelta%5Cto0%5E%2B%7D%5Cint_0%5E%7B1-%5Cdelta%7D%5Cfrac%7B%5Cmathrm%20dt%7D%7B%5Clog%20t%7D%2B%5Cint_%7B1%2B%5Cdelta%7D%5E2%5Cfrac%7B%5Cmathrm%20dt%7D%7B%5Clog%20t%7D%5Capprox%201.04%5Cdots

由此也有

  • 8)%5Cpi(x)%3D%5Cmathrm%7BLi%7D(x)%2Bo%5Cleft(%5Cfrac%20x%7B%5Clog%20x%7D%5Cright)%2C%5Cquad%20x%5Cto%5Cinfty

7)式與8)式都是素數(shù)定理的推論,并且事實上用他們來逼近素數(shù)計數(shù)函數(shù)比1)更精確:

來自百度百科

更進一步,可以利用大O符號進行更精確的估計,是形如:

%5Cpi(x)%3D%5Cmathrm%7BLi%7D(x)%2B%5Cmathcal%20O(A)

其中大O符號是在x趨于無窮時與li(x)的比值為0,通常情況下它是通過Tchebyshev?psi函數(shù)的估計式得出,即

%5Cpsi(x)%3Dx%2B%5Cmathcal%20O(B)


Prime Dream(2)——素數(shù)定理的推論的評論 (共 條)

分享到微博請遵守國家法律
绥阳县| 仁寿县| 兴宁市| 兰坪| 广水市| 海城市| 寻甸| 扎鲁特旗| 任丘市| 南充市| 电白县| 临武县| 神木县| 平舆县| 长沙市| 衡南县| 郸城县| 龙里县| 新建县| 积石山| 会泽县| 青海省| 永修县| 大新县| 八宿县| 加查县| 涪陵区| 天门市| 吉木萨尔县| 嘉定区| 河北省| 龙南县| 南平市| 漳平市| 横山县| 张家港市| 当涂县| 怀来县| 辽源市| 兰溪市| 尼勒克县|