最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網(wǎng) 會員登陸 & 注冊

【數(shù)學(xué)】有限展開(泰勒展開)

2022-05-10 03:44 作者:景叢  | 我要投稿

一.引言

????本質(zhì):使用多項(xiàng)式仿造較復(fù)雜的函數(shù),以便于研究其性質(zhì)。

????????(多項(xiàng)式性質(zhì)簡單,只需要對自變量進(jìn)行有限次的加、減、乘三種算術(shù)運(yùn)算,就能求得其函數(shù)值)


????????例子:在微分的應(yīng)用中,當(dāng)%7Cx%7C很小時,有如下的近似等式:

? ???????e%5Ex%E2%89%881%2Bx? ? ? ? ? ? ? ? ? ? ? ??ln(x%2B1)%E2%89%88x

?????????在?x%3D0 處這兩個一次多項(xiàng)式及其一階導(dǎo)數(shù)的值,分別等于被近似表達(dá)的函數(shù)及其倒數(shù)的相應(yīng)值。

?????x%3D0%3A%20e%5Ex%3D1%2Bx%3D1%20%3B%20ln(1%2Bx)%3Dx%3D0

?????x%3D0%3A(e%5Ex)'%3D(1%2Bx)'%3D1%3B(ln(1%2Bx))'%3D%5Cfrac%7B1%7D%7B1%2Bx%7D%3Dx'%3D0%20

????????用一階多項(xiàng)式來近似表達(dá)了指數(shù)函數(shù)和對數(shù)函數(shù),以便于簡化對于后二者函數(shù)性質(zhì)的研究。


二.公式來源

????核心思想:仿造一段曲線,要先保證起點(diǎn)相同,再保證在此處導(dǎo)數(shù)相同,繼續(xù)保證在此處的導(dǎo)數(shù)的導(dǎo)數(shù)相同……


有一個解析式復(fù)雜的函數(shù)f(x), 用n次多項(xiàng)式g(x)來仿造f(x)。


????①在f(x)上任選一點(diǎn)切入進(jìn)行模仿,為計(jì)算方便選擇(0%2Cf(0))。

????????由于g(x)是可以求n階導(dǎo)的n次多項(xiàng)式,則易得其解析式形式為:

????????g(x)%3Da_%7B0%7D%20%2Ba_%7B1%7D%20x%2Ba_%7B2%7D%20x%5E2%2Ba_%7B3%7D%20x%5E3%2B...%2Ba_%7Bn%7D%20x%5En


????②初始點(diǎn)相同

????????g(0)%3Df(0)%3Da_%7B0%7D%20? ? 求得a_0%3Df(0)


????③n階導(dǎo)數(shù)相同

????????g%5En(0)%3Df%5En(0)%3Dn!a_n%20? ?求得?a_n%3D%5Cfrac%7Bf%5En(0)%7D%7Bn!%7D%20


????④代入a_0%2Ca_1%2Ca_2...a_n的值到g(x)解析式,得起點(diǎn)為0的公式

????????g(x)%3Df(0)%20%2B%5Cfrac%7Bf%5E1(0)%7D%7B1!%7D%20%20x%2B%5Cfrac%7Bf%5E2(0)%7D%7B2!%7D%20%20x%5E2%2B%5Cfrac%7Bf%5E3(0)%7D%7B3!%7D%20%20x%5E3%2B...%2B%5Cfrac%7Bf%5En(0)%7D%7Bn!%7D%20%20x%5En%20

? ??? ??

以上推得的公式的起點(diǎn)選擇為(0%2Cf(0))。如果任選某一起點(diǎn)(a%2Cf(a)),重新進(jìn)行以上推導(dǎo)步驟,則可得模仿函數(shù)的一般公式(任意起點(diǎn)x=a)


g(x)%3Df(a)%20%2B%5Cfrac%7Bf%5E1(a)%7D%7B1!%7D%20%20(x-a)%2B%5Cfrac%7Bf%5E2(a)%7D%7B2!%7D%20%20(x-a)%5E2%2B%5Cfrac%7Bf%5E3(a)%7D%7B3!%7D%20%20(x-a)%5E3%2B...%2B%5Cfrac%7Bf%5En(a)%7D%7Bn!%7D%20%20(x-a)%5En


(相當(dāng)于把自變量從(x-0)換成了(x-a))

當(dāng)n趨近于正無窮時,等號才成立。


這個公式被稱為泰勒公式。作用:已知某復(fù)雜函數(shù)f(x)的某點(diǎn)的值(a%2Cf(a))以及其n階導(dǎo)數(shù)值f%5En(a),用多項(xiàng)式g(x)來仿造該函數(shù)該點(diǎn)在內(nèi)的某一段,以研究這個點(diǎn)附近的f(x)函數(shù)性質(zhì)。


三.常用泰勒展開式推導(dǎo)(起點(diǎn)為x=0,即a取0;n趨近于正無窮)


????①f(x)%3De%5Ex

????????計(jì)算易得:f%5E1(0)%3Df%5E2(0)%3Df%5E3(0)%3D...%3Df%5En(0)%3D1

????????代入進(jìn)模仿函數(shù)的起點(diǎn)為0的公式,得:

????????g(x)%3D1%2B%5Cfrac%7Bx%7D%7B1!%7D%20%2B%5Cfrac%7Bx%5E2%7D%7B2!%7D%20%2B%5Cfrac%7Bx%5E3%7D%7B3!%7D%20%2B...%2B%5Cfrac%7Bx%5En%7D%7Bn!%7D%20

? ??

? ? (不常用的:f(x)%3Da%5Ex

????????由?a%5Ex%3De%5E%7Bxlna%7D, 把①式里的x換成xlna即可得:

????????g(x)%3D1%2Bxlna%2B%5Cfrac%7B(xlna)%5E2%7D%7B2!%7D%20%2B%5Cfrac%7B(xlna)%5E3%7D%7B3!%7D%20%2B...%2B%5Cfrac%7B(xlna)%5En%7D%7Bn!%7D%20



????②f(x)%3Dsinx

????????由:f%5E1(x)%3Dcosx%2Cf%5E2(x)%3D-sinx%2Cf%5E3(x)%3D-cosx%2Cf%5E4(x)%3Dsinx%2C...%0A

????????推得通項(xiàng)為:f%5En(x)%3Dsin(x%2B%5Cfrac%7Bn%5Cpi%20%7D%7B2%7D%20)

????????計(jì)算易得:f(0)%3D0%2Cf%5E1(0)%3D1%2Cf%5E2(0)%3D0%2Cf%5E3(0)%3D-1%2Cf%5E4(0)%3D0?它們順序循環(huán)地取四個數(shù):0,1,0,-1 。觀察可得:偶數(shù)項(xiàng)系數(shù)為0。令n=2m。

????????g(x)%3Dx-%5Cfrac%7Bx%5E3%7D%7B3!%7D%20%2B%5Cfrac%7Bx%5E5%7D%7B5!%7D%20-%5Cfrac%7Bx%5E7%7D%7B7!%7D%20%2B...%2B%5Cfrac%7B(-1)%5Emx%5E%7B2m%2B1%7D%7D%7B(2m%2B1)!%7D%20? (2m+1也可寫為2m-1)



????③f(x)%3Dcosx?(同上原理)

????????由:f%5E1(x)%3D-sinx%2Cf%5E2(x)%3D-cosx%2Cf%5E3(x)%3Dsinx%2Cf%5E4(x)%3Dcosx%2C...%0A

????????推得通項(xiàng)為:f%5En(x)%3Dcos(x%2B%5Cfrac%7Bn%5Cpi%20%7D%7B2%7D%20)

????????計(jì)算易得:f(0)%3D1%2Cf%5E1(0)%3D0%2Cf%5E2(0)%3D-1%2Cf%5E3(0)%3D0%2Cf%5E4(0)%3D1?它們順序循環(huán)地取四個數(shù):1,0,-1,0。觀察可得:奇數(shù)項(xiàng)系數(shù)為0。令n=2m。

????????g(x)%3D1-%5Cfrac%7Bx%5E2%7D%7B2!%7D%20%2B%5Cfrac%7Bx%5E4%7D%7B4!%7D%20-%5Cfrac%7Bx%5E6%7D%7B6!%7D%20%2B...%2B%5Cfrac%7B(-1)%5Enx%5E%7B2m%7D%7D%7B(2m)!%7D%20

????(還有個更簡單的方法:cosx=sin’x,③可以通過②求導(dǎo)得到。)



????④f(x)%3D(1%2Bx)%5E%5Calpha%20

????????計(jì)算得:

????????f%5E1(x)%3D%5Calpha%20(1%2Bx)%5E%7B%5Calpha-1%7D%2Cf%5E2(x)%3D%5Calpha(%5Calpha-1)%20(1%2Bx)%5E%7B%5Calpha-2%7D

????????f%5E3(x)%3D%5Calpha(%5Calpha-1)%20(%5Calpha-2)(1%2Bx)%5E%7B%5Calpha-3%7D?

????????...

????????f%5En(x)%3D%5Calpha(%5Calpha-1)%20(%5Calpha-2)(%5Calpha-3)...(%5Calpha-n%2B1)(1%2Bx)%5E%7B%5Calpha-n%7D

????????代入進(jìn)模仿函數(shù)的起點(diǎn)為0的公式,得: ????g(x)%3D1%2B%5Calpha%20x%2B%5Cfrac%7B%5Calpha(%5Calpha%20-1)%20%7D%7B2!%7D%20x%5E2%2B%5Cfrac%7B%5Calpha(%5Calpha%20-1)%20(%5Calpha%20-2)%7D%7B3!%7D%20x%5E3%2B...%2B%5Cfrac%7B%5Calpha(%5Calpha%20-1)...%20(%5Calpha%20-n%2B1)%7D%7Bn!%7D%20x%5En



????⑤f(x)%3D%5Cfrac%7B1%7D%7Bx%2B1%7D%20

? ? ? ?將α= -1代入④式,得:?g(x)%3D1-x%2Bx%5E2-x%5E3%2B...%2B(-1)%5Enx%5En



????⑥f(x)%3D%5Cfrac%7B1%7D%7Bx-1%7D%20

????????將⑤中x替換為-x,得:g(x)%3D1%2Bx%2Bx%5E2%2Bx%5E3%2B...%2Bx%5En

????????(也可以通過等比數(shù)列求和公式得到)



????⑦f(x)%3Dln(1%2Bx)

????????對⑤進(jìn)行積分,得:g(x)%3Dx-%5Cfrac%7Bx%5E2%7D%7B2%7D%20%2B%5Cfrac%7Bx%5E3%7D%7B3%7D%20-...%2B(-1)%5E%7Bn-1%7D%5Cfrac%7Bx%5En%7D%7Bn%7D%20



????⑧f(x)%3Dln(1-x)

????????將⑦中x替換為-x,得:g(x)%3D-x-%5Cfrac%7Bx%5E2%7D%7B2%7D%20-%5Cfrac%7Bx%5E3%7D%7B3%7D%20-...-%5Cfrac%7Bx%5En%7D%7Bn%7D%20



進(jìn)一步延伸:

????f(x)%3D%5Csqrt%7B1%2Bx%7D%20?或?f(x)%3D%5Cfrac%7B1%7D%7B%5Csqrt%7B1%2Bx%7D%20%7D%20,它們的模仿函數(shù)可以分別讓④式里的α取1/2或?-1/2 得到;

????f(x)%3DArctanx?可以通過f(x)%3D%5Cfrac%7B1%7D%7B1%2Bx%5E2%7D%20?的積分得到,而后者通過把⑤中x替換為x的平方得到;

????由?chx%3D%5Cfrac%7Be%5E%7B-x%7D%2Be%5Ex%7D%7B2%7D%20,代入①得其模仿函數(shù),shx同理;

????……



四.余項(xiàng)的處理

(目前來說用處不大,暫不細(xì)講)

n不趨近于正無窮時,存在誤差。設(shè)誤差值為R_n(x),則有:

f(x)%20%3D%20g(x)%20%20%2B%20R_n(x)


余項(xiàng),三種形式




參考資料:

https://www.zhihu.com/question/25627482/answer/313088784 知乎用戶P17e01

《高等數(shù)學(xué)》 第七版 上冊 同濟(jì)大學(xué)數(shù)學(xué)系


【數(shù)學(xué)】有限展開(泰勒展開)的評論 (共 條)

分享到微博請遵守國家法律
绥阳县| 陇南市| 永济市| 巴马| 西丰县| 崇州市| 河池市| 高雄县| 绍兴市| 安溪县| 安多县| 土默特左旗| 盐亭县| 潮州市| 南和县| 香港| 孟津县| 梨树县| 海南省| 长垣县| 上饶县| 芦山县| 耒阳市| 纳雍县| 赫章县| 松阳县| 观塘区| 株洲县| 罗源县| 伊通| 弋阳县| 通道| 福清市| 堆龙德庆县| 老河口市| 新和县| 铜川市| 靖远县| 永德县| 洛川县| 大丰市|