最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網(wǎng) 會(huì)員登陸 & 注冊(cè)

spq法的簡(jiǎn)單運(yùn)用(三)

2023-08-07 19:39 作者:夢(mèng)違Changer  | 我要投稿

例三:a%E3%80%81b%E3%80%81c%5Cin%20R%5E%2B%20%E4%B8%94a%2Bb%2Bc%3D3,求證:%5Cfrac%7B1%7D%7Ba%5E2%20%7D%2B%20%5Cfrac%7B1%7D%7Bb%5E2%20%7D%2B%5Cfrac%7B1%7D%7Bc%5E2%20%7D%5Cgeq%20a%5E2%2Bb%5E2%2Bc%5E2

證明:原不等式%5Ciff%20%5Cfrac%7B%5Csum%5Cnolimits_%7Bcyc%7D%5E%7B%7Da%5E2%20b%5E2%20%20%20%7D%7Ba%5E2%20b%5E2%20c%5E2%20%7D%20%5Cgeq%20%5Csum_%7Bcyc%7D%5E%7B%7D%20a%5E2

%5Ciff%20%5Csum_%7Bcyc%7D%5E%7B%7D%20a%5E2%20b%5E2%20%5Cgeq(a%5E2%20b%5E2%20c%5E2)%20%5Csum_%7Bcyc%7D%5E%7B%7Da%5E2%20

3%3D%5Csum_%7Bcyc%7D%5E%7B%7Da%3Ds%E3%80%81%5Csum_%7Bcyc%7D%5E%7B%7Dab%3Dq%E3%80%81abc%3Dp

%5Ciff%20q%5E2-6p%5Cgeq%20p%5E2(9-2q)

%5Ciff%20q%5E2%2B2p%5E2%20q%5Cgeq%206p%2B9p%5E2

這個(gè)式子非常麻煩,因?yàn)?img type="latex" class="latex" src="http://api.bilibili.com/x/web-frontend/mathjax/tex?formula=p" alt="p">同時(shí)出現(xiàn)在不等號(hào)的兩邊,難以放縮。但更加不幸的并不是這一點(diǎn),我會(huì)在下文中說(shuō)明。

仿照前幾題的證明方法,設(shè)法消元得到一元函數(shù)后再進(jìn)行分類討論。

q%5Cgeq%20%5Csqrt%7B3sp%7D%20%3D3%5Csqrt%7Bp%7D%20%EF%BC%8C%E7%9F%A5q%5E2%2B2p%5E2%20q%5Cgeq%209p%2B6p%5E2%5Csqrt%7Bp%7D%20%20

那么根據(jù)前幾題的經(jīng)驗(yàn),我們只需知道使得上式恒成立的p的范圍

上式%5Ciff%204p%5E3-9p%5E2%2B6p-1%5Cgeq%200%20%20

%5Ciff%20(p-1)%5E2(4p-1)%5Cgeq%200

上式對(duì)于p%5Cin%20%5B%5Cfrac%7B1%7D%7B4%7D%2C%2B%20%E2%88%9E)恒成立,從而只需討論p%E2%88%88(0%2C%5Cfrac%7B1%7D%7B4%7D%5D%20的情況

這里我試圖證明余下的情況時(shí)沒有動(dòng)用三次舒爾不等式,原因是解剛才的不等式時(shí)已動(dòng)用兩次均值消元,若想消p,會(huì)動(dòng)用兩次均值與一次三次舒爾不等式,只會(huì)放得更松。

于是我直接對(duì)q%5E2%2B2p%5E2%20q%5Cgeq%206p%2B9p%5E2進(jìn)行解二次不等式

%5Ciff%20(9-2q)p%5E2%20%2B6p-q%5E2%5Cgeq%200

其中%5CDelta%20%3D4(9%2B9q%5E2-2q%5E3%20),函數(shù)g(q)%3D9%2B9q%5E2-2q%5E3%20的極大值為36,極小值為9

從而其圖像與x軸僅有一個(gè)實(shí)交點(diǎn),又g(4)%C2%B7g(5)%3D25%5Ctimes%20(-16)%EF%BC%9C0

從而g(q)%3D0的唯一實(shí)根在(4%2C5)之間,故知對(duì)q%5Cin%20(0%2C3%5D%EF%BC%8C%5CDelta%20%EF%BC%9E0

%5Ciff%20%5Cfrac%7B-3-%5Csqrt%7B9%2B9q%5E2-2q%5E3%20%7D%7D%7B9-2q%7D%5Cleq%20p%5Cleq%20%20%5Cfrac%7B-3%2B%5Csqrt%7B9%2B9q%5E2-2q%5E3%20%7D%7D%7B9-2q%7D

q%5Cleq%20%5Cfrac%7Bs%5E2%20%7D%7B3%7D%20%3D3%20%5Cfrac%7B-3-%5Csqrt%7B9%2B9q%5E2-2q%5E3%20%7D%7D%7B9-2q%7D%EF%BC%9C0%EF%BC%9Cp是恒成立的,

我們考慮使得%5Cfrac%7B1%7D%7B4%7D%5Cleq%20%20%5Cfrac%7B-3%2B%5Csqrt%7B9%2B9q%5E2-2q%5E3%20%7D%7D%7B9-2q%7D恒成立的q

%5Ciff%20-32q%5E3%20%2B140q%5E2%2B84q-297%5Cgeq%200%20

q%5Cin%20(-%E2%88%9E%2C-%5Cfrac%7B3%7D%7B2%7D%20%5D%5Ccup%20%5B%5Cfrac%7B11%7D%7B8%7D%20%2C%5Cfrac%7B9%7D%7B2%7D%20%5D

這說(shuō)明當(dāng)p%E2%88%88(0%2C%5Cfrac%7B1%7D%7B4%7D%20%5D%20%E4%B8%94q%5Cin%20%5B%5Cfrac%7B11%7D%7B8%7D%2C3%5D時(shí)原不等式成立

我們只需繼續(xù)證明當(dāng)p%E2%88%88(0%2C%5Cfrac%7B1%7D%7B4%7D%20%5D%20%E4%B8%94q%5Cin%20(0%2C%5Cfrac%7B11%7D%7B8%7D%5D時(shí)原不等式成立即可

其實(shí)當(dāng)q%5Cin%20(0%2C%5Cfrac%7B11%7D%7B8%7D%5D%E6%97%B6p有更小的范圍

我繼續(xù)逼出p%5Cleq%20%5Cfrac%7Bq%5E2%7D%7B9%7D%20%3D%5Cfrac%7B121%7D%7B576%7D%20,并考慮使得%5Cfrac%7B121%7D%7B576%7D%5Cleq%20%20%5Cfrac%7B-3%2B%5Csqrt%7B9%2B9q%5E2-2q%5E3%20%7D%7D%7B9-2q%7D恒成立的q

2q%5E3-%5Cfrac%7B731855%7D%7B82944%7Dq%5E2-%5Cfrac%7B75746%7D%7B18432%7D%20q%2B%5Cfrac%7B61105%7D%7B4096%7D%5Cleq%20%200

這里直接交給計(jì)算器,得q%5Cin%20(-%E2%88%9E%2C-1.33236%5D%5Ccup%20%5B1.24410%2C%5Cfrac%7B9%7D%7B2%0A%7D%5D%20

接下來(lái)只需證明當(dāng)p%E2%88%88(0%2C%5Cfrac%7B121%7D%7B576%7D%20%5D%20%E4%B8%94q%5Cin%20(0%2C1.24410%5D時(shí)原不等式成立

可以看到,我們“成功”進(jìn)一步縮小了q的范圍,我斷定再進(jìn)行有限次重復(fù)的操作,能最終證明原不等式。

但是,真的有小可愛會(huì)這樣算下去嗎?

于是,這種思路pass,我們換一條路。

我們已經(jīng)充分感受到此題的不等式十分之緊,故而最好不要進(jìn)行放縮,在這里,我們證明一個(gè)引理。

引理:a%E3%80%81b%E3%80%81c%5Cin%20R,若記%5Csum_%7Bcyc%7D%5E%7B%7Da%3Ds%E3%80%81%5Csum_%7Bcyc%7D%5E%7B%7Dab%3Dq%E3%80%81abc%3Dp,%5Cfrac%7B1%7D%7B27%7D%5B-2s%5E3%2B9qs-2(s%5E2-3q)%5E%5Cfrac%7B3%7D%7B2%7D%5D%5Cleq%20p%5Cleq%20%5Cfrac%7B1%7D%7B27%7D%5B-2s%5E3%2B9qs%2B2(s%5E2-3q)%5E%5Cfrac%7B3%7D%7B2%7D%5D

證明:f(x)%3D(x-a)(x-b)(x-c)%3Dx%5E3-sx%5E2%2Bqx-p

那么,f'(x)%3D3x%5E2-2sx%2Bq,則f(x)(%5Cfrac%7Bs-%5Csqrt%7Bs%5E2-3q%20%7D%20%7D%7B3%7D%2C%5Cfrac%7Bs%2B%5Csqrt%7Bs%5E2-3q%20%7D%20%7D%7B3%7D%20)上單調(diào)遞減,在(-%E2%88%9E%2C%5Cfrac%7Bs-%5Csqrt%7Bs%5E2-3q%20%7D%20%7D%7B3%7D)%5Ccup%20(%5Cfrac%7Bs%2B%5Csqrt%7Bs%5E2-3q%20%7D%20%7D%7B3%7D%20%2C%2B%E2%88%9E)上單調(diào)遞增,并在%5Cfrac%7Bs-%5Csqrt%7Bs%5E2-3q%20%7D%20%7D%7B3%7D%E4%B8%8E%5Cfrac%7Bs%2B%5Csqrt%7Bs%5E2-3q%20%7D%20%7D%7B3%7D處取到極大值與極小值

因此,存在a%E3%80%81b%E3%80%81c%5Cin%20R%5Ciff%20f(x)%0A有三個(gè)實(shí)數(shù)根(記重根)

%5Ciff%20%5Cfrac%7B1%7D%7B27%7D%5B-2s%5E3%2B9qs%2B2(s%5E2-3q)%5E%5Cfrac%7B3%7D%7B2%7D%5D-p%5Cgeq%200%E4%B8%94%5Cfrac%7B1%7D%7B27%7D%5B-2s%5E3%2B9qs-2(s%5E2-3q)%5E%5Cfrac%7B3%7D%7B2%7D%5D-p%5Cleq%20%200

%5Ciff%20%5Cfrac%7B1%7D%7B27%7D%5B-2s%5E3%2B9qs-2(s%5E2-3q)%5E%5Cfrac%7B3%7D%7B2%7D%5D%5Cleq%20p%5Cleq%20%5Cfrac%7B1%7D%7B27%7D%5B-2s%5E3%2B9qs%2B2(s%5E2-3q)%5E%5Cfrac%7B3%7D%7B2%7D%5D

回到原題,我們的目標(biāo)是去證明當(dāng)q%5Cin%20(0%2C3%5D%E6%97%B6%EF%BC%8Cq%5E2%2B2p%5E2%20q%5Cgeq%206p%2B9p%5E2

前文已經(jīng)做過(guò)相同的分析,只需證明p%5Cleq%20%20%5Cfrac%7B-3%2B%5Csqrt%7B9%2B9q%5E2-2q%5E3%20%7D%7D%7B9-2q%7D

由引理知%20p%5Cleq%20%5Cfrac%7B1%7D%7B27%7D%5B-2s%5E3%2B9qs%2B2(s%5E2-3q)%5E%5Cfrac%7B3%7D%7B2%7D%5D%3D%5Cfrac%7B2%7D%7B27%7D(9-3q)%5E%5Cfrac%7B3%7D%7B2%7D%2Bq-2

只需證%20%5Cfrac%7B2%7D%7B27%7D(9-3q)%5E%5Cfrac%7B3%7D%7B2%7D%2Bq-2%20%5Cleq%20%20%5Cfrac%7B-3%2B%5Csqrt%7B9%2B9q%5E2-2q%5E3%20%7D%7D%7B9-2q%7D

這個(gè)不等式肯定是成立的,而且不需要分類討論

%5Ciff%20%5B%20%5Cfrac%7B2%7D%7B27%7D(9-3q)%5E%5Cfrac%7B3%7D%7B2%7D%2Bq-2%5D(9-2q)%20%5Cleq-3%2B%5Csqrt%7B9%2B9q%5E2-2q%5E3%20%7D

我們考慮函數(shù)f(x)%3D%20%5B%20%5Cfrac%7B2%7D%7B27%7D(9-3x)%5E%5Cfrac%7B3%7D%7B2%7D%2Bx-2%5D(9-2x)%20%2B3-%5Csqrt%7B9%2B9x%5E2-2x%5E3%20%7D

目標(biāo)證明0與3是f(x)%3D0相鄰的兩個(gè)根,從而利用其連續(xù)性說(shuō)明上式成立

我們令f(x)%3D0,并不斷化簡(jiǎn),最終得到:%5Cfrac%7B256%7D%7B729%7Dx%5E%7B10%7D-%5Cfrac%7B640%7D%7B81%7D%20x%5E9%2B%5Cfrac%7B1904%7D%7B27%7Dx%5E8-%5Cfrac%7B2672%7D%7B9%7Dx%5E7%2B%5Cfrac%7B3748%7D%7B9%7Dx%5E6%2B%5Cfrac%7B3712%7D%7B3%7Dx%5E5-5976x%5E4%2B9072x%5E3%20-4860x%5E2%20%20%3D0

x%5E2(x-3)%5E2(x-%5Cfrac%7B9%7D%7B2%7D%20)%5E2(%5Cfrac%7B256%7D%7B729%7D%20x%5E4-%5Cfrac%7B640%7D%7B243%7Dx%5E3%2B%5Cfrac%7B16%7D%7B9%7D%20x%5E2%2B%5Cfrac%7B544%7D%7B27%7Dx-%5Cfrac%7B80%7D%7B3%7D%20%20)%3D0

我們解四次方程%5Cfrac%7B256%7D%7B729%7D%20x%5E4-%5Cfrac%7B640%7D%7B243%7Dx%5E3%2B%5Cfrac%7B16%7D%7B9%7D%20x%5E2%2B%5Cfrac%7B544%7D%7B27%7Dx-%5Cfrac%7B80%7D%7B3%7D%3D0

%5CDelta%20%3D%5Cfrac%7B4%5E%7B51%7D%5Ctimes797%20%20%7D%7B3%5E%7B59%7D%20%7D%20%EF%BC%9E0,從而方程有兩個(gè)互異實(shí)根與一對(duì)共軛虛根

我們只考慮正實(shí)根,若記t%3D%5Cfrac%7B%5Cfrac%7B4%5E7%5Ctimes19%20%20%7D%7B3%5E9%20%7D%2B%5Csqrt%5B3%5D%7B%5Cfrac%7B2%5E%7B42%7D%5Ctimes6585%20%20%7D%7B3%5E%7B28%7D%0A%7D%2B%5Cfrac%7B3%7D%7B2%7D%5Csqrt%7B%5Cfrac%7B4%5E%7B51%7D%5Ctimes%20797%20%7D%7B3%5E%7B59%7D%7D%20%7D%20%20%7D%20%20%2B%5Csqrt%5B3%5D%7B%5Cfrac%7B2%5E%7B42%7D%5Ctimes6585%20%20%7D%7B3%5E%7B28%7D%0A%7D-%5Cfrac%7B3%7D%7B2%7D%5Csqrt%7B%5Cfrac%7B4%5E%7B51%7D%5Ctimes%20797%20%7D%7B3%5E%7B59%7D%7D%20%7D%20%20%7D%20%20%7D%7B3%7D%20

x_%7B1%2C2%7D%20%3D%5Cfrac%7B%5Cfrac%7B640%7D%7B243%7D-%5Csqrt%7Bt%7D%5Cpm%5Csqrt%7B%5Cfrac%7B7%5Ctimes%202%5E%7B25%7D%7D%7B3%5E%7B15%7D%C2%B7%5Csqrt%7Bt%7D%20%20%7D%2B%5Cfrac%7B4%5E7%5Ctimes19%20%7D%7B3%5E9%20%7D-t%20%20%7D%20%20%20%20%7D%7B%5Cfrac%7B1024%7D%7B729%7D%20%7D%20

取近似值得到1%EF%BC%9Cx_%7B1%7D%EF%BC%9C2%E3%80%81x_%7B2%7D%EF%BC%9C0

于是,f(x)%3D0的根為(有可能有增根,但0與3是原方程的根)x_%7B1%7D%3Dx_%7B2%7D%3D0%E3%80%81%20%20x_%7B3%7D%3Dx_%7B4%7D%3D3%E3%80%81x_%7B5%7D%3Dx_%7B6%7D%3D%5Cfrac%7B5%7D%7B2%7D%E3%80%811%EF%BC%9Cx_%7B7%7D%EF%BC%9C2%E3%80%81x_%7B8%7D%EF%BC%9C0%20

我們只考慮正實(shí)根,他們?yōu)?與%5Cxi%20%5Cin%20(1%2C2)

(1) 若%5Cxif(x)%3D0的增根,則0、3是f(x)%3D0相鄰的兩個(gè)根,又f(1)%3D%5Cfrac%7B28%7D%7B9%7D%5Csqrt%7B6%7D-8%EF%BC%9C0,故而在(0%2C3%5D上,連續(xù)函數(shù)f(x)%5Cleq%200,原不等式得證!

(2)若%5Cxif(x)%3D0的根,分兩種情況討論

①若f(%5Cxi%20)%3Df'(%5Cxi%20)%3D0(即%5Cxi%20是一個(gè)極值點(diǎn),且極值為0):

首先f(x)%E6%98%AF%E5%AE%9A%E4%B9%89%E5%9C%A8(-%E2%88%9E%2C3%5D上的連續(xù)函數(shù)

f'(x)%3D%5Cfrac%7B3x%5E2-9x%20%7D%7B%5Csqrt%7B9%2B9x%5E2-2x%5E3%20%20%7D%20%7D%20%2B%5Cfrac%7B(10x-39)%5Csqrt%7B9-3x%7D%20%7D%7B9%7D-4x%2B13%20

其中f'(0)%3D0,即0是極值點(diǎn),而0與%5Cxi%20f(x)%3D0相鄰的兩個(gè)根

若0是極小值點(diǎn),由f(1)%3D%5Cfrac%7B28%7D%7B9%7D%5Csqrt%7B6%7D-8%EF%BC%9C0f(x)%E5%9C%A8(0%2C1)間有一根,矛盾!

若0是極大值點(diǎn),%5Cxi%20是極小值點(diǎn),其與0一定不是相鄰的極大值與極小值點(diǎn),從而0與%5Cxi%20之間一定存在另一個(gè)根,矛盾!

那么%5Cxi%20一定是極大值點(diǎn)

我們知道f(1)%3D%5Cfrac%7B28%7D%7B9%7D%5Csqrt%7B6%7D-8%EF%BC%9C0%20%20%E3%80%81f(2)%3D%5Cfrac%7B10%7D%7B9%7D%5Csqrt%7B3%7D%2B3-%5Csqrt%7B29%7D%20%20%EF%BC%9C0%20

由于f(x)%E5%9C%A8(0%2C3%5D上連續(xù),從而%E5%9C%A8(0%2C3%5D%E4%B8%8Af(x)%5Cleq%200

②若f'(%5Cxi%20)%5Cneq%200(即%5Cxi%20非極值點(diǎn)):

先前已經(jīng)得到f(x)%3D0%E5%9C%A8(1%2C2)上有且僅有一根%5Cxi%20,且f'(%5Cxi%20)%5Cneq%200,則f(1)f(2)%EF%BC%9C0,矛盾!從而這種情況是不存在的

綜上,原不等式得證!

實(shí)際上,%5Cxi%20是在解方程過(guò)程中由于平方而得到的增根,從圖像上可以看出來(lái):

x7(點(diǎn)A)是t(x)=0的根而非與f(x)=0等價(jià)的s(x)=0的根


spq法的簡(jiǎn)單運(yùn)用(三)的評(píng)論 (共 條)

分享到微博請(qǐng)遵守國(guó)家法律
姜堰市| 渑池县| 湟中县| 通州市| 保康县| 铁岭市| 青铜峡市| 同江市| 兴国县| 清徐县| 博白县| 酒泉市| 永嘉县| 高阳县| 云阳县| 南川市| 福海县| 乌兰察布市| 吉安市| 晋州市| 徐水县| 名山县| 德保县| 龙游县| 辉南县| 万全县| 昌江| 九江市| 清河县| 禄丰县| 丹寨县| 白玉县| 海口市| 沂水县| 宁武县| 华池县| 辽宁省| 丘北县| 唐河县| 烟台市| 津南区|