自動(dòng)駕駛之心多傳感器標(biāo)定 融合感知 模型部署全棧課程
多傳感器融合定位:兩小時(shí)速覽
狀態(tài)估計(jì)(State Estimation)選用傳感器需要考慮哪些因素:
1)誤差不相關(guān)性。也就是說,用于Sensor Fusion的傳感器其中單個(gè)傳感器(Sensor Measurement)測(cè)量失敗,不會(huì)導(dǎo)致其它傳感器(Sensor)由于相同的原因而同時(shí)失敗。
2)傳感器的相互補(bǔ)充性。 比如IMU可以填充GPS兩次定位間隔期間的定位輸出,用于平滑GPS/GNSS的定位結(jié)果;GPS為IMU提供初值,消除IMU單獨(dú)使用出現(xiàn)的偏移(Drift)的問題;Lidar可以彌補(bǔ)定位精度的問題,而GNSS可以為L(zhǎng)idar定位地圖匹配提供地圖范圍數(shù)據(jù)。
傳感器的標(biāo)定(Sensor Calibration)
如果想要各個(gè)傳感器能夠相互協(xié)同,無間配合,傳感器的標(biāo)定是必不可少的。傳感器的標(biāo)定通常分為三種: 內(nèi)參標(biāo)定(Intrinsic Calibration)、外參標(biāo)定(Extrinsic Calibration)和時(shí)間校準(zhǔn)(Temporal Calibration)。


自動(dòng)駕駛汽車一般包含多個(gè)Camera、3D 激光雷達(dá)(Lidar)、慣性測(cè)量單元(IMU)、多個(gè)Radar、GPS/GNSS Reciver、輪速計(jì)(Wheel Odmetry),這些傳感器在運(yùn)行過程中時(shí)刻都在以不同的頻率發(fā)送不同類型的數(shù)據(jù),多傳感器融合模塊需要將這些信息融合起來,不斷更新自動(dòng)駕駛車輛的狀態(tài)(Vehicle State)。多傳感器融合進(jìn)行狀態(tài)估計(jì)(State Estimation)的流程如下:
