Meta2032流動性質(zhì)押挖礦開發(fā)源碼版丨Meta2032流動性質(zhì)押挖礦系統(tǒng)開發(fā)(邏輯及功能)
The public chain is the core carrier of Web3.0,supporting interoperability,empowerment,and credit mechanisms,as well as various applications.The Web3.0 public chain circuit mainly includes Layer1,Layer2,and Layer0.
Blockchain technology can thus empower enterprises in many ways:providing reliable shared data and building trust between parties;Eliminate data silos,which integrate data into a system through centralized ledgers that are shared in a network and support licensee access;Give data a high degree of security
The evolution of new data oriented information technologies such as blockchain,artificial intelligence,digital twins,human-computer interaction,and the Internet of Things is not accidental,but rather a technological preparation for the evolution from Web 2.0 to Web 3.0.From a technical perspective,MetaUniverse is a trusted digital value interaction network based on the support of the Web3.0 technical system and operating mechanism,and is a new Web3.0 digital ecosystem centered on blockchain.Metaverse is a new scenario,new industry,and new ecology supported by the Web3.0 technology system with blockchain as its core,which will spawn a large number of innovative business models in the digital environment and form a new paradigm for digital space.
import io
import torch
import torch.onnx
from models.C3AEModel import PlainC3AENetCBAM
device=torch.device("cuda:0"if torch.cuda.is_available()else"cpu")
def test():
關(guān)于區(qū)塊鏈項(xiàng)目技術(shù)開發(fā)唯:MrsFu123,代幣發(fā)行、dapp智能合約開發(fā)、鏈游開發(fā)、多鏈錢包開發(fā)
交易所開發(fā)、量化合約開發(fā)、互助游戲開發(fā)、Nft數(shù)字藏品開發(fā)、眾籌互助開發(fā)、元宇宙開發(fā)、swap開發(fā)、
鏈上合約開發(fā)、ido開發(fā)、商城開發(fā)等,開發(fā)過各種各樣的系統(tǒng)模式,更有多種模式、制度、案例、后臺等,成熟技術(shù)團(tuán)隊(duì),歡迎實(shí)體參考。
model=PlainC3AENetCBAM()
pthfile=r'/home/joy/Projects/models/emotion/PlainC3AENet.pth'
loaded_model=torch.load(pthfile,map_location='cpu')
#try:
#loaded_model.eval()
#except AttributeError as error:
#print(error)
model.load_state_dict(loaded_model['state_dict'])
#model=model.to(device)
#data type nchw
dummy_input1=torch.randn(1,3,64,64)
#dummy_input2=torch.randn(1,3,64,64)
#dummy_input3=torch.randn(1,3,64,64)
input_names=["actual_input_1"]
output_names=["output1"]
#torch.onnx.export(model,(dummy_input1,dummy_input2,dummy_input3),"C3AE.onnx",verbose=True,input_names=input_names,output_names=output_names)
torch.onnx.export(model,dummy_input1,"C3AE_emotion.onnx",verbose=True,input_names=input_names,output_names=output_names)
if __name__=="__main__":
test()