最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網(wǎng) 會(huì)員登陸 & 注冊(cè)

復(fù)旦大學(xué)謝啟鴻高等代數(shù)每周一題[2021A14]參考解答

2021-12-19 20:45 作者:CharlesMa0606  | 我要投稿

本文是本人給出的2021年復(fù)旦大學(xué)謝啟鴻高等代數(shù)的每周一題[問題2021A14]的解答

題目來自于復(fù)旦大學(xué)謝啟鴻教授在他的博客提供的每周一題練習(xí)

(鏈接:https://www.cnblogs.com/torsor/p/15329047.html)

本文僅供學(xué)習(xí)交流,如有錯(cuò)誤懇請(qǐng)指正!

[問題2021A14]設(shè)V是n維復(fù)線性空間,%5Cvarphi是V上的線性變換.證明:可將V看成是2n維實(shí)線性空間V_0,%5Cvarphi看成是V_0上的實(shí)線性變換%5Cvarphi_0,并且det%5Cleft(%5Cvarphi_0%5Cright)%3D%5Cleft%7Cdet%5Cleft(%5Cvarphi%5Cright)%5Cright%7C%5E2,其中%5Cleft%7C%5C%20%5Ccdot%20%5C%20%5Cright%7C表示復(fù)數(shù)的模長.

? 因?yàn)榫€性變換在不同基下的表示矩陣是相似的,而且矩陣的行列式在相似關(guān)系下不改變,所以線性變換的行列式定義為它的任一表示矩陣的行列式.

證明? 取V基%5C%7Be_1%2C%5Ccdots%2Ce_n%5C%7D,我們斷言可以將V看作2n維實(shí)線性空間V_0,其中V_0%3DL%5Cleft(e_1%2C%5Ccdots%2Ce_n%2Cie_1%2C%5Ccdots%2Cie_n%5Cright),注意到在實(shí)線性空間V_0%5C%7Be_1%2C%5Ccdots%2Ce_n%2Cie_1%2C%5Ccdots%2Cie_n%5C%7D線性無關(guān),按定義證明:

設(shè)存在a_k%2Cb_k%5Cin%5Cmathbb%7BR%7D%2Cs.t.a_1e_1%2B%5Ccdots%2Ba_ne_n%2Bb_1%5Cleft(ie_1%5Cright)%2B%5Ccdots%2Bb_n%5Cleft(ie_n%5Cright)%3D0,則z_1e_1%2B%5Ccdots%2Bz_ne_n%3D0,其中z_k%3Da_k%2Bb_ki%5Cin%5Cmathbb%7BC%7D,于是由%5C%7Be_1%2C%5Ccdots%2Ce_n%5C%7D是復(fù)線性空間V基,于是z_k%3D0%5CLeftrightarrow%20a_k%3Db_k%3D0,即%5C%7Be_1%2C%5Ccdots%2Ce_n%2Cie_1%2C%5Ccdots%2Cie_n%5C%7DV_0基.

對(duì)任意%5Calpha%3Dz_1e_1%2B%5Ccdots%2Bz_ne_n%5Cin%20V%2Cz_k%3Da_k%2Bb_ki%5Cin%5Cmathbb%7BC%7D%2Ca_i%2Cb_i%5Cin%5Cmathbb%7BR%7D則有%5Calpha%3Da_1e_1%2B%5Ccdots%2Ba_ne_n%2Bb_1%5Cleft(ie_1%5Cright)%2B%5Ccdots%2Bb_n%5Cleft(ie_n%5Cright)%5Cin%20V_0,于是V%5Csubseteq%20V_0,同理可證V_0%5Csubseteq%20V.從而有V%3DV_0.

設(shè)%5Cvarphi的表示陣為A%3D%5Cleft(a_%7Bij%7D%5Cright)%5Cin%20M_n%5Cleft(%5Cmathbb%7BC%7D%5Cright),則由表示陣的定義可知

%5Cleft(%5Cvarphi%5Cleft(e_1%5Cright)%2C%5Ccdots%2C%5Cvarphi%5Cleft(e_n%5Cright)%5Cright)%3D%5Cleft(e_1%2C%5Ccdots%2Ce_n%5Cright)A

更具體地,

%5Cvarphi%5Cleft(e_k%5Cright)%3D%5Csum_%7Bj%3D1%7D%5E%7Bn%7D%7Ba_%7Bjk%7De_j%7D%3D%5Csum_%7Bj%3D1%7D%5E%7Bn%7D%7BRe%5Cleft(a_%7Bjk%7D%5Cright)e_j%7D%2B%5Csum_%7Bj%3D1%7D%5E%7Bn%7DIm%5Cleft(a_%7Bjk%7D%5Cright)%5Cleft(ie_j%5Cright)

%5Cvarphi%5Cleft(ie_k%5Cright)%3Di%5Cvarphi%5Cleft(e_k%5Cright)%3Di%5Csum_%7Bj%3D1%7D%5E%7Bn%7D%7Ba_%7Bjk%7De_j%7D%3D%5Csum_%7Bj%3D1%7D%5E%7Bn%7DRe%5Cleft(a_%7Bjk%7D%5Cright)%5Cleft(ie_j%5Cright)-%5Csum_%7Bj%3D1%7D%5E%7Bn%7D%7BIm%5Cleft(a_%7Bjk%7D%5Cright)e_j%7D

于是我們定義%5Cvarphi_0%3AV_0%5Crightarrow%20V_0%2Cs.t.%5Cvarphi_0%5Cleft(e_k%5Cright)%3D%5Cvarphi%5Cleft(e_k%5Cright)%2C%5Cvarphi_0%5Cleft(ie_k%5Cright)%3D%5Cvarphi%5Cleft(ie_k%5Cright),從而%5Cvarphi能看成是V_0上的實(shí)線性變換%5Cvarphi_0.由表示陣的定義,我們有:

%5Cleft(%5Cvarphi%5Cleft(e_1%5Cright)%2C%5Ccdots%2C%5Cvarphi%5Cleft(e_n%5Cright)%2C%5Cvarphi%5Cleft(ie_1%5Cright)%2C%5Ccdots%2C%5Cvarphi%5Cleft(ie_n%5Cright)%5Cright)%3D%5Cleft(e_1%2C%5Ccdots%2Ce_n%2Cie_1%2C%5Ccdots%2Cie_n%5Cright)B%2CB%3D%5Cleft(%5Cbegin%7Bmatrix%7DRe%5Cleft(A%5Cright)%26-Im%5Cleft(A%5Cright)%5C%5CIm%5Cleft(A%5Cright)%26Re%5Cleft(A%5Cright)%5C%5C%5Cend%7Bmatrix%7D%5Cright)

由高代白皮書例2.60可知,或者利用初等變換法,有

det%5Cleft(%5Cvarphi_0%5Cright)%3Ddet%5Cleft(B%5Cright)%3Ddet%5Cleft(Re%5Cleft(A%5Cright)%2BiIm%5Cleft(A%5Cright)%5Cright)det%5Cleft(Re%5Cleft(A%5Cright)-iIm%5Cleft(A%5Cright)%5Cright)%3D%5Cleft%7Cdet%5Cleft(A%5Cright)%5Cright%7C%5E2

從而det%5Cleft(%5Cvarphi_0%5Cright)%3D%5Cleft%7C%5Cvarphi%5Cright%7C%5E2.

%5BQ.E.D%5D

注??文末附上圖片格式的解法,有需要的讀者可以自行取用,僅供學(xué)習(xí)交流


復(fù)旦大學(xué)謝啟鴻高等代數(shù)每周一題[2021A14]參考解答的評(píng)論 (共 條)

分享到微博請(qǐng)遵守國家法律
米林县| 武穴市| 方山县| 呼玛县| 正宁县| 富蕴县| 东明县| 钟祥市| 乌拉特前旗| 桐城市| 嘉义市| 乐东| 泗洪县| 汝南县| 九寨沟县| 永年县| 团风县| 元氏县| 星座| 无锡市| 乐至县| 简阳市| 科技| 胶南市| 宿迁市| 方正县| 驻马店市| 内丘县| 景德镇市| 闸北区| 木兰县| 南汇区| 南澳县| 祁东县| 晴隆县| 左贡县| 平武县| 昌都县| 琼海市| 民县| 临沧市|