最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網(wǎng) 會員登陸 & 注冊

復習筆記Day112:概率論知識總結(jié)(四)

2023-03-03 22:54 作者:間宮_卓司  | 我要投稿

在開始第六章之前先寫道題目吧

附錄 5.3.3 (%5Ctext%7BStieltjes%7D積分的分部積分公式)如果F%2CG%5Ba%2Cb%5D上右連續(xù)單調(diào)函數(shù),那么

F%5Cleft(%20b%20%5Cright)%20G%5Cleft(%20b%20%5Cright)%20-F%5Cleft(%20a%20%5Cright)%20G%5Cleft(%20a%20%5Cright)%20%3D%5Cint_%7B%5Cleft(%20a%2Cb%20%5Cright%5D%7D%5E%7B%7D%7BF%5Cleft(%20t-%20%5Cright)%20%5Cmathrm%7Bd%7DG%5Cleft(%20t%20%5Cright)%7D%2B%5Cint_%7B%5Cleft(%20a%2Cb%20%5Cright%5D%7D%5E%7B%7D%7BG%5Cleft(%20t%20%5Cright)%20%5Cmathrm%7Bd%7DF%5Cleft(%20t%20%5Cright)%7D

112.1 證明:如果隨機變量%5Cxi可積,則

(a)?%5Cunderset%7By%5Crightarrow%20%2B%5Cinfty%7D%7B%5Clim%7Dy%5Cmathbb%7BP%7D%20%5Cleft(%20%5Cxi%20%3Ey%20%5Cright)%20%3D0

(b)%5Cmathbb%7BE%7D%20%5Cxi%20%3D%5Cint_0%5E%7B%2B%5Cinfty%7D%7B%5Cmathbb%7BP%7D%20%5Cleft(%20%5Cxi%20%3Ey%20%5Cright)%20%5Cmathrm%7Bd%7Dy%7D-%5Cint_0%5E%7B%2B%5Cinfty%7D%7B%5Cmathbb%7BP%7D%20%5Cleft(%20%5Cxi%20%3C-y%20%5Cright)%20%5Cmathrm%7Bd%7Dy%7D

不知道這題的正常證明方法是什么,我就寫一下我的方法吧···

先來證明一下(b),我想到的是用離散型隨機變量去逼近這個隨機變量

第一步:先證明%5Cmathbb%7BE%7D%20%5Cleft(%20%5Cxi%3B%5Cleft%5C%7B%200%3C%5Cxi%5Cle%20x%20%5Cright%5C%7D%20%5Cright)%20%3D%5Cint_0%5Ex%7B%5Cleft%5B%20F(x)%20-F%5Cleft(%20t%20%5Cright)%20%5Cright%5D%20%5Cmathrm%7Bd%7Dt%7D,其中F(x)%5Cxi的分布函數(shù)。證明方法如下:

類似于定理4.1.1中(3)的證明,構造函數(shù)

%5Cphi%20_n%5Cleft(%20u%20%5Cright)%20%3Du1_%7B%5Cleft(%20-%5Cinfty%20%2C0%20%5Cright%5D%20%5Ccup%20%5Cleft(%20x%2C%2B%5Cinfty%20%5Cright)%7D%5Cleft(%20u%20%5Cright)%20%2B%5Csum_%7Bk%3D1%7D%5En%7B%5Cfrac%7Bx%5Cleft(%20k-1%20%5Cright)%7D%7Bn%7D1_%7B%5Cleft(%20%5Cfrac%7Bx%5Cleft(%20k-1%20%5Cright)%7D%7Bn%7D%2C%5Cfrac%7Bxk%7D%7Bn%7D%20%5Cright%5D%7D%7D%5Cleft(%20u%20%5Cright)%20

并記%5Cxi_n%3D%5Cphi_n(%5Cxi),那么

%5Cmathbb%7BP%7D%20%5Cleft(%20%5Cxi_n%3D%5Cfrac%7Bxk%7D%7Bn%7D%20%5Cright)%20%3D%5Cmathbb%7BP%7D%20%5Cleft(%20%5Cfrac%7Bx%5Cleft(%20k-1%20%5Cright)%7D%7Bn%7D%3C%5Cxi%5Cle%20%5Cfrac%7Bxk%7D%7Bn%7D%20%5Cright)%20%3DF%5Cleft(%20%5Cfrac%7Bkx%7D%7Bn%7D%20%5Cright)%20-F%5Cleft(%20%5Cfrac%7B%5Cleft(%20k-1%20%5Cright)%20x%7D%7Bn%7D%20%5Cright)%20%2Ck%3D1%2C2%2C%5Ccdots%20%2Cn

并且%5Cxi_n%5Crightarrow%5Cxi

進一步可以計算出%5Cxi_n的分布函數(shù)為

F_n%3D1_%7B%5Cleft(%20-%5Cinfty%20%2C0%20%5Cright%5D%20%5Ccup%20%5Cleft(%20x%2C%2B%5Cinfty%20%5Cright)%7DF%2B%5Csum_%7Bk%3D1%7D%5En%7BF%5Cleft(%20%5Cfrac%7Bxk%7D%7Bn%7D%20%5Cright)%201_%7B%5Cleft(%20%5Cfrac%7Bx%5Cleft(%20k-1%20%5Cright)%7D%7Bn%7D%2C%5Cfrac%7Bxk%7D%7Bn%7D%20%5Cright%5D%7D%7D

接下來,計算可得

%5Cbegin%7Baligned%7D%0A%09%26%5Cmathbb%7BE%7D%20%5Cleft(%20%5Cxi%20_n%2C%5Cleft%5C%7B%200%3C%5Cxi%20_n%5Cle%20x%20%5Cright%5C%7D%20%5Cright)%20%3D%5Cint_%7B%5Cleft(%200%2Cx%20%5Cright%5D%7D%5E%7B%7D%7Bt%5Cmathrm%7Bd%7DF_n%5Cleft(%20t%20%5Cright)%7D%5C%5C%0A%09%26%3D%5Csum_%7Bk%3D1%7D%5En%7B%5Cfrac%7Bkx%7D%7Bn%7D%5Cleft(%20%5Cmathbb%7BP%7D%20%5Cleft(%20%5Cxi%20_n%5Cle%20%5Cfrac%7Bkx%7D%7Bn%7D%20%5Cright)%20-%5Cmathbb%7BP%7D%20%5Cleft(%20%5Cxi%20_n%5Cle%20%5Cfrac%7B%5Cleft(%20k-1%20%5Cright)%20x%7D%7Bn%7D%20%5Cright)%20%5Cright)%7D%5C%5C%0A%09%26%3Dx%5Cmathbb%7BP%7D%20%5Cleft(%20%5Cxi%20_n%5Cle%20x%20%5Cright)%20-%5Cfrac%7Bx%7D%7Bn%7D%5Csum_%7Bk%3D1%7D%5En%7B%5Cmathbb%7BP%7D%20%5Cleft(%20%5Cxi%20_n%5Cle%20%5Cfrac%7Bkx%7D%7Bn%7D%20%5Cright)%7D%5C%5C%0A%09%26%3DxF%5Cleft(%20x%20%5Cright)%20-%5Csum_%7Bk%3D1%7D%5En%7B%5Cfrac%7Bx%7D%7Bn%7DF%5Cleft(%20%5Cfrac%7Bxk%7D%7Bn%7D%20%5Cright)%7D%5C%5C%0A%5Cend%7Baligned%7D

所以

%5Cunderset%7Bn%5Crightarrow%20%5Cinfty%7D%7B%5Clim%7D%5Cmathbb%7BE%7D%20%5Cleft(%20%5Cxi%20_n%3B%5Cleft%5C%7B%200%3C%5Cxi%20_n%5Cle%20x%20%5Cright%5C%7D%20%5Cright)%20%3D%5Cmathbb%7BE%7D%20%5Cleft(%20%5Cunderset%7Bn%5Crightarrow%20%5Cinfty%7D%7B%5Clim%7D%5Cxi%20_n%3B%5Cleft%5C%7B%200%3C%5Cxi%20_n%5Cle%20x%20%5Cright%5C%7D%20%5Cright)%20%3D%5Cmathbb%7BE%7D%20%5Cleft(%20%5Cxi%20%3B%5Cleft%5C%7B%200%3C%5Cxi%20%5Cle%20x%20%5Cright%5C%7D%20%5Cright)%20

結(jié)論得證

同理可證%5Cmathbb%7BE%7D%20%5Cleft(%20%5Cxi%20%3B%5Cleft%5C%7B%20-y%5Cle%20%5Cxi%20%3C0%20%5Cright%5C%7D%20%5Cright)%20%3D%5Cint_0%5Ey%7B%5Cleft%5B%20F%5Cleft(%20-y%20%5Cright)%20-F%5Cleft(%20-t%20%5Cright)%20%5Cright%5D%20%5Cmathrm%7Bd%7Dt%7D,其中y%5Cge0

兩式相加就有

%5Cmathbb%7BE%7D%20%5Cleft(%20%5Cxi%20%3B%5Cleft%5C%7B%20-y%3C%5Cxi%20%3Cx%20%5Cright%5C%7D%20%5Cright)%20%3D%5Cint_0%5Ex%7B%5Cleft%5B%20F%5Cleft(%20x%20%5Cright)%20-F%5Cleft(%20t%20%5Cright)%20%5Cright%5D%20%5Cmathrm%7Bd%7Dt%7D%2B%5Cint_0%5Ey%7B%5Cleft%5B%20F%5Cleft(%20-y%20%5Cright)%20-F%5Cleft(%20-t%20%5Cright)%20%5Cright%5D%20%5Cmathrm%7Bd%7Dt%7D

分別令x%2Cy%5Crightarrow%2B%5Cinfty,可得

%5Cmathbb%7BE%7D%20%5Cxi%20%3D%5Cint_0%5E%7B%2B%5Cinfty%7D%7B%5Cleft%5B%201-F%5Cleft(%20t%20%5Cright)%20%5Cright%5D%20%5Cmathrm%7Bd%7Dt%7D-%5Cint_0%5E%7B%2B%5Cinfty%7D%7BF%5Cleft(%20-y%20%5Cright)%20%5Cmathrm%7Bd%7Dt%7D%3D%5Cint_0%5E%7B%2B%5Cinfty%7D%7B%5Cmathbb%7BP%7D%20%5Cleft(%20%5Cxi%20%3Ey%20%5Cright)%20%5Cmathrm%7Bd%7Dy%7D-%5Cint_0%5E%7B%2B%5Cinfty%7D%7B%5Cmathbb%7BP%7D%20%5Cleft(%20%5Cxi%20%3C-y%20%5Cright)%20%5Cmathrm%7Bd%7Dy%7D

另外這題也可以用@共與陽光擁抱哀醬提供的方法

這個方法比我自己想的方法要簡單很多

(a)依附錄 5.3.3,取F(x)%3Dx%2CG(x)%3DP(%5Cxi%5Cle%20x)%2Cb%5Cge0

%5Cbegin%7Baligned%7D%0A%09%5Cint_%7B%5Cleft(%200%2Cb%20%5Cright%5D%7D%5E%7B%7D%7By%5Cmathrm%7Bd%7DF%5Cleft(%20y%20%5Cright)%7D%26%3DbF%5Cleft(%20b%20%5Cright)%20-%5Cint_%7B%5Cleft(%200%2Cb%20%5Cright%5D%7D%5E%7B%7D%7BF%5Cleft(%20y%20%5Cright)%20%5Cmathrm%7Bd%7Dy%7D%5C%5C%0A%09%26%3D-b%5Cleft(%201-F%5Cleft(%20b%20%5Cright)%20%5Cright)%20%2B%5Cint_%7B%5Cleft(%200%2Cb%20%5Cright%5D%7D%5E%7B%7D%7B%5Cleft%5B%201-F%5Cleft(%20y%20%5Cright)%20%5Cright%5D%20%5Cmathrm%7Bd%7Dy%7D%5C%5C%0A%5Cend%7Baligned%7D

從(b)可知

%5Cmathbb%7BE%7D%20%5Cleft(%20%5Cxi%20%3B%5Cleft%5C%7B%200%5Cle%20%5Cxi%20%3C%20%2B%5Cinfty%20%5Cright%5C%7D%20%5Cright)%20%3D%5Cint_0%5E%7B%2B%5Cinfty%7D%7B%5Cleft%5B%201-F%5Cleft(%20t%20%5Cright)%20%5Cright%5D%20%5Cmathrm%7Bd%7Dt%7D

所以%5Cunderset%7By%5Crightarrow%20%2B%5Cinfty%7D%7B%5Clim%7Dy%5Cmathbb%7BP%7D%20%5Cleft(%20%5Cxi%20%3Ey%20%5Cright)%20%3D0

類似地可以證明%5Cunderset%7By%5Crightarrow%20-%5Cinfty%7D%7B%5Clim%7Dy%5Cmathbb%7BP%7D%20%5Cleft(%20%5Cxi%20%3Cy%20%5Cright)%20%3D0

第六章 隨機變量

§6.1 隨機向量及聯(lián)合分布

這節(jié)簡單介紹了一下隨機向量,想要進一步了解還是要參考別的概率論課本

協(xié)方差的定義是%5Cmathrm%7Bcov%7D%5Cleft(%20%5Cxi%20%2C%5Ceta%20%5Cright)%20%3A%3D%5Cmathbb%7BE%7D%20%5Cleft%5B%20%5Cleft(%20%5Cxi%20-%5Cmathbb%7BE%7D%20%5Cxi%20%5Cright)%20%5Cleft(%20%5Ceta%20-%5Cmathbb%7BE%7D%20%5Ceta%20%5Cright)%20%5Cright%5D%20%3D%5Cmathbb%7BE%7D%20%5Cxi%20%5Ceta%20-%5Cmathbb%7BE%7D%20%5Cxi%20%5Cmathbb%7BE%7D%20%5Ceta%20

對于隨機向量X%3D%5Cleft(%20%5Cxi%20_1%2C%5Ccdots%20%2C%5Cxi%20_n%20%5Cright)%20,定義其協(xié)方差矩陣為A%3D%5Cleft(%20%5Cmathrm%7Bcov%7D%5Cleft(%20%5Cxi%20_i%2C%5Cxi%20_j%20%5Cright)%20%5Cright)%20_%7Bn%5Ctimes%20n%7D,也可以表示成A%3D%5Cmathbb%7BE%7D%20%5Cleft%5B%20X%5ETX%20%5Cright%5D%20-%5Cleft(%20%5Cmathbb%7BE%7D%20X%20%5Cright)%20%5ET%5Cleft(%20%5Cmathbb%7BE%7D%20X%20%5Cright)%20

引理6.1.1 協(xié)方差矩陣是正定矩陣

只要把協(xié)方差運算看成是%5Cmathscr%7BF%7D上的內(nèi)積,這個性質(zhì)應該很好理解

§6.2 均勻分布與正態(tài)分布

這節(jié)沒有任何的定理、引理、定義,按道理要直接跳過的,不過這本書的多維正態(tài)分布好像比其他(我讀過的)的概率論課本寫的要好一些(也可能是我之前沒有認真看),所以我大概寫一下

f%5Cleft(%20x%20%5Cright)%20%3D%5Cexp%20%5Cleft%5C%7B%20-%5Cfrac%7B1%7D%7B2%7DxA%5E%7B-1%7Dx%5ET%20%5Cright%5C%7D%20,則f%5Cmathbf%7BR%7D%5En上可積當且僅當A是正定矩陣,進一步計算可得%5Cint_%7Bx%5Cin%20%5Cmathbf%7BR%7D%5En%7D%7Bf%5Cleft(%20x%20%5Cright)%20%5Cmathrm%7Bd%7Dx%3D%5Csqrt%7B%5Cdet%20%5Cleft(%20A%20%5Cright)%7D%5Cleft(%20%5Csqrt%7B2%5Cpi%7D%20%5Cright)%20%5En%7D

稱以f%5Cleft(%20x%20%5Cright)%20%3D%5Cfrac%7B%5Cexp%20%5Cleft%5C%7B%20-%5Cfrac%7B1%7D%7B2%7D%5Cleft(%20x-a%20%5Cright)%20A%5E%7B-1%7D%5Cleft(%20x-a%20%5Cright)%20%5ET%20%5Cright%5C%7D%7D%7B%5Csqrt%7B%5Cdet%20%5Cleft(%20A%20%5Cright)%7D%5Cleft(%20%5Csqrt%7B2%5Cpi%7D%20%5Cright)%20%5En%7D為概率密度函數(shù)的隨機向量X為服從參數(shù)為a%2CA的隨機變量,記為X%5Csim%20N%5Cleft(%20a%2CA%20%5Cright)%20,再經(jīng)過計算可得,X的協(xié)方差矩陣正是A

§6.3 隨機向量的函數(shù)的分布

指出了計算重積分時可以用%5Ctext%7BFubini%7D定理交換積分次序,然后介紹了一些具體的例子。懶得敲上來了

第七、十章我就不看了,下一篇從第八章開始更新



復習筆記Day112:概率論知識總結(jié)(四)的評論 (共 條)

分享到微博請遵守國家法律
元谋县| 德安县| 崇州市| 苏尼特左旗| 九龙坡区| 自贡市| 永福县| 彭州市| 新巴尔虎左旗| 新乡县| 江口县| 长治县| 新兴县| 民勤县| 垦利县| 深州市| 贵港市| 绥德县| 丰台区| 辉县市| 望奎县| 英吉沙县| 武乡县| 东明县| 万全县| 马关县| 寿阳县| 江源县| 延吉市| 哈尔滨市| 谢通门县| 肃南| 四川省| 阳泉市| 平和县| 紫阳县| 昔阳县| 吕梁市| 长汀县| 惠来县| 文登市|