最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網(wǎng) 會(huì)員登陸 & 注冊(cè)

【標(biāo)題速讀】【Nano_letter】【2022年】【9月】

2023-07-02 15:52 作者:Rt_Cola  | 我要投稿

聲明:本專欄主要對(duì)生命科學(xué)領(lǐng)域的一些期刊文章標(biāo)題進(jìn)行翻譯,所有內(nèi)容均由本人手工整理翻譯。由于本人專業(yè)為生物分析相關(guān),其他領(lǐng)域如果出現(xiàn)翻譯錯(cuò)誤請(qǐng)諒解。

A chiral coupling between neighboring magnetic layers, the interlayer Dzyaloshinskii–Moriya interaction, has been utilized to assist spin-orbit torque to efficiently switch perpendicular magnetization of magnetic films free of any external magnetic fields, which can be promisingly applied to design spin-orbit torque magnetic random-access memories and other practical spintronic devices.

相鄰磁層之間的手性耦合,即層間Dzyaloshinskii–Moriya相互作用,已被用于輔助自旋軌道轉(zhuǎn)矩,以有效地切換沒有任何外部磁場(chǎng)的磁膜的垂直磁化,這可以很有希望地應(yīng)用于設(shè)計(jì)自旋軌道轉(zhuǎn)矩磁隨機(jī)存取存儲(chǔ)器和其他實(shí)用的自旋電子器件。

An in vivo programmable tumor cells/T effector cells bispecific nano-immuno-engager improves immunotherapy against cancers. The peptidic nanoparticles bind the tumor cell surface α3β1 integrin and undergo in situ transformation into the nanofibrillar network. The prolonged retained nanofibrillar network at the tumor microenvironment captures T effector cells via activatable α4β1 integrin ligands.

體內(nèi)可編程腫瘤細(xì)胞/T效應(yīng)細(xì)胞雙特異性納米免疫接合劑可改善癌癥的免疫治療。 肽納米粒子結(jié)合腫瘤細(xì)胞表面的α3β1整合素并原位轉(zhuǎn)化為納米纖維網(wǎng)絡(luò)。 腫瘤微環(huán)境中長(zhǎng)期保留的納米纖維網(wǎng)絡(luò)通過可激活的 α4β1 整合素配體捕獲 T 效應(yīng)細(xì)胞。

Amorphizing nanostructured noble metals is important yet challenging in the field of electrocatalysis. With a glassy nucleation-assisted kinetic control strategy, a series of amorphous PdCu nanospheres and nanowires are achieved under mild conditions. Such amorphous catalysts, endowed with high surface reactivity, can efficiently cleave the C-C bond in ethanol electrooxidation.

非晶化納米結(jié)構(gòu)貴金屬在電催化領(lǐng)域很重要但也具有挑戰(zhàn)性。 通過玻璃態(tài)成核輔助動(dòng)力學(xué)控制策略,在溫和條件下獲得了一系列非晶態(tài) PdCu 納米球和納米線。 這種無定形催化劑具有高表面反應(yīng)活性,可以在乙醇電氧化中有效裂解C-C鍵。

We demonstrate a conceptual model to achieve the ultrasensitive thermally activated upconversion in an energy-migratory erbium sublattice through controllable surface interactions. The high relative sensitivity (5.27% K?1) and thermochromic feature make it an ideal candidate toward noncontact nanothermometry, optical information encryption, and anticounterfeiting.

我們展示了一個(gè)概念模型,通過可控表面相互作用在能量遷移鉺亞晶格中實(shí)現(xiàn)超靈敏熱激活上轉(zhuǎn)換。 高相對(duì)靈敏度 (5.27% K?1) 和熱致變色特性使其成為非接觸式納米測(cè)溫、光學(xué)信息加密和防偽的理想候選者。

Single-atom-kernelled nanocluster catalyst, bridging single atom catalyst and nanocrystal catalyst, can not only provide multiple metal atom sites but also bear a higher surface atom ratio. Unfortunately, it is not reported yet. Here a Pd-based tri-metal nanocluster with a single-Ag atom-kernel was successfully synthesized for the first time by the introduction of some steric hindrance factors and employment of a joint alloying strategy that combines the co-reduction with an anti-galvanic reduction (AGR), which exhibits higher catalytic performance and Au utilization efficiency than the bimetal precursor nanocluster in the electrocatalytical reduction of CO2 to CO. Further investigations reveal that the kernel single atoms from both Au4Pd6 and Au3AgPd6 are not the active sites for catalysis, but they exert an influence on the electronic structure and thus affect the catalytical properties as well as other properties.

單原子kernelled納米團(tuán)簇催化劑,橋接單原子催化劑和納米晶體催化劑,不僅可以提供多個(gè)金屬原子位點(diǎn),而且具有更高的表面原子比。不幸的是,目前還沒有報(bào)道。通過引入一些空間位阻因子并采用聯(lián)合合金化策略,首次成功合成了具有單個(gè)Ag原子核的Pd基三金屬納米團(tuán)簇,其在CO2電催化還原為CO中表現(xiàn)出比雙金屬前體納米簇更高的催化性能和Au利用效率。進(jìn)一步的研究表明,來自Au4Pd6和Au3AgPd6的核單原子都不是催化的活性位點(diǎn),但它們對(duì)電子結(jié)構(gòu)產(chǎn)生影響,從而影響催化性能以及其它性能。

This work demonstrates a novel strategy to kinetically control enzyme-instructed self-assembly of the peptides in living cells by using host?guest complexation. Our results indicate that the host?guest complexation can selectively form cytotoxic nanostructures in mitochondria of cancer cells and induce cancer cell death, mainly through ferroptosis in vitro and in vivo. This study provides a general strategy to selectively program cancer cell death by modulating the intracellular self-assembly of the peptide.

這項(xiàng)工作展示了一種通過使用主客體絡(luò)合來動(dòng)力學(xué)控制活細(xì)胞中酶指導(dǎo)的肽自組裝的新策略。 我們的結(jié)果表明,主客體絡(luò)合可以在癌細(xì)胞的線粒體中選擇性地形成細(xì)胞毒性納米結(jié)構(gòu),并主要通過體外和體內(nèi)的鐵死亡來誘導(dǎo)癌細(xì)胞死亡。 這項(xiàng)研究提供了一種通過調(diào)節(jié)肽的細(xì)胞內(nèi)自組裝來選擇性編程癌細(xì)胞死亡的一般策略。

A nanopillar-enabled method to quantitatively probe the nuclear shape alterations in tumor cells at single-cell resolution. Low malignant cells with a smooth nuclear envelope form isotropic ring deformations on nanopillars, while high malignant cells with twisted nuclei exhibit anisotropic line patterns.

一種基于納米柱的方法,能夠以單細(xì)胞分辨率定量探測(cè)腫瘤細(xì)胞的核形狀變化。 具有光滑核膜的低度惡性細(xì)胞在納米柱上形成各向同性環(huán)變形,而具有扭曲核的高度惡性細(xì)胞表現(xiàn)出各向異性線圖案。

Large-scale and ultrafast laser shock manufacturing method provides a general strategy for the large-scale adjustment of two-dimensional material strain. Nonuniform strains of CVD-grown two-dimensional materials are introduced through the cooperative deformation of materials and metal@metal oxide nanoparticles through laser shock. The field effect mobility of the MoS2 transistor is increased by 23 times.

大規(guī)模超快激光沖擊制造方法為二維材料應(yīng)變的大規(guī)模調(diào)節(jié)提供了通用策略。 CVD 生長(zhǎng)的二維材料的非均勻應(yīng)變是通過激光沖擊使材料和金屬@金屬氧化物納米顆粒協(xié)同變形而引入的。 MoS2晶體管的場(chǎng)效應(yīng)遷移率提高了23倍。

Microscope-integrable technique reveals the dynamics of force generation by cancer cells that invade basement membrane matrix around breast-cancer tumors. The forces are computed by detecting nanoscale matrix displacements and using probe-based microrheometry. This technique introduces cellular-force quantification in 3D culture, comparable to traction force microscopy in 2D culture.

顯微鏡積分技術(shù)揭示了癌細(xì)胞侵入乳腺癌腫瘤周圍基底膜基質(zhì)時(shí)產(chǎn)生力的動(dòng)態(tài)。 通過檢測(cè)納米級(jí)基質(zhì)位移并使用基于探針的微流變測(cè)量法來計(jì)算力。 該技術(shù)在 3D 培養(yǎng)中引入了細(xì)胞力定量,與 2D 培養(yǎng)中的牽引力顯微鏡相當(dāng)。

1.Near-Infrared Carbon Nanotube Tracking Reveals the Nanoscale Extracellular Space around Synapses.

近紅外碳納米管追蹤揭示了突觸周圍的納米級(jí)細(xì)胞外空間。

2.Field-Free Spin–Orbit Torque Switching Enabled by the Interlayer Dzyaloshinskii–Moriya Interaction.

通過層間 Dzyaloshinskii-Moriya 相互作用實(shí)現(xiàn)無場(chǎng)自旋軌道扭矩切換。

3.Programmable Bispecific Nano-immunoengager That Captures T Cells and Reprograms Tumor Microenvironment.

可編程雙特異性納米免疫參與劑,可捕獲 T 細(xì)胞并重新編程腫瘤微環(huán)境。

4.Enhanced Intracellular Transcytosis of Nanoparticles by Degrading Extracellular Matrix for Deep Tissue Radiotherapy of Pancreatic Adenocarcinoma.

通過降解細(xì)胞外基質(zhì)增強(qiáng)納米顆粒的細(xì)胞內(nèi)轉(zhuǎn)胞吞作用,用于胰腺癌的深部組織放射治療。

5.Experimental Evidence of Superdiffusive Thermal Transport in Si0.4Ge0.6 Thin Films.

Si0.4Ge0.6 薄膜中超擴(kuò)散熱傳輸?shù)膶?shí)驗(yàn)證據(jù)。

6.Uphill Diffusion Induced Point Contact Reaction in Si Nanowires.

硅納米線中的上坡擴(kuò)散誘導(dǎo)點(diǎn)接觸反應(yīng)。

7.Mooij Law Violation from Nanoscale Disorder.

納米級(jí)無序違反 Mooij 法。

8.Staged Assembly of Colloids Using DNA and Acoustofluidics.

使用 DNA 和聲流控技術(shù)分階段組裝膠體。

9.Simulations of DNA-Origami Self-Assembly Reveal Design-Dependent Nucleation Barriers.

DNA 折紙自組裝模擬揭示了設(shè)計(jì)相關(guān)的成核勢(shì)壘。

10.Nanoscale Valley Modulation by Surface Plasmon Interference.

通過表面等離激元干擾進(jìn)行納米級(jí)谷調(diào)制。

11.Atomic Diffusion of Indium through Threading Dislocations in InGaN Quantum Wells.

InGaN 量子阱中通過螺紋位錯(cuò)進(jìn)行的原子擴(kuò)散。

12.Counting Point Defects at Nanoparticle Surfaces by Electron Holography.

通過電子全息術(shù)計(jì)算納米粒子表面的點(diǎn)缺陷。

13.Acetic Acid Enables Precise Tailoring of the Mechanical Behavior of Protein-Based Hydrogels.

乙酸能夠精確定制蛋白質(zhì)水凝膠的機(jī)械行為。

14.MEMS Tunable Metasurfaces Based on Gap Plasmon or Fabry–Pérot Resonances.

基于間隙等離子體或法布里-珀羅共振的 MEMS 可調(diào)諧超表面。

15.In Situ TEM Observation of Stagnant Liquid Layer Activation in Nanochannel.

納米通道中停滯液體層激活的原位 TEM 觀察。

16.Hexagonal Network of Photocurrent Enhancement in Few-Layer Graphene/InGaN Quantum Dot Junctions.

少層石墨烯/InGaN量子點(diǎn)結(jié)中光電流增強(qiáng)的六邊形網(wǎng)絡(luò)。

17.Dimensionality Mediated Highly Repeatable and Fast Transformation of Coordination Polymer Single Crystals for All-Optical Data Processing.

維數(shù)介導(dǎo)的配位聚合物單晶的高度可重復(fù)和快速轉(zhuǎn)變,用于全光學(xué)數(shù)據(jù)處理。

18.Tunable Nanoplasmonic Photodetectors.

可調(diào)諧納米等離子體光電探測(cè)器。

19.Operando Direct Observation of Stable Water-Oxidation Intermediates on Ca2–xIrO4 Nanocrystals for Efficient Acidic Oxygen Evolution.

直接觀察 Ca2-xIrO4 納米晶體上穩(wěn)定的水氧化中間體有效釋放酸性氧氣。

20.Acceleration of Biexciton Radiative Recombination at Low Temperature in CdSe Nanoplatelets.

CdSe 納米片低溫下雙激子輻射復(fù)合的加速。

21.Approximately 30 nm Nanogroove Formation on Single Crystalline Silicon Surface under Pulsed Nanosecond Laser Irradiation.

脈沖納秒激光照射下在單晶硅表面形成約 30 nm 的納米凹槽。

22.Thickness-Dependent Dark-Bright Exciton Splitting and Phonon Bottleneck in CsPbBr3-Based Nanoplatelets Revealed via Magneto-Optical Spectroscopy.

通過磁光光譜揭示 CsPbBr3 基納米片中厚度依賴性的暗-亮激子分裂和聲子瓶頸。

23.Scalable-doped Nanoporous 1T″ ReSe2 via a General Surface Co-Alloy Strategy.

通過通用表面鈷合金策略實(shí)現(xiàn)可擴(kuò)展摻雜納米多孔 1T" ReSe2。

24.Tailoring Amorphous PdCu Nanostructures for Efficient C–C Cleavage in Ethanol Electrooxidation.

定制非晶態(tài) PdCu 納米結(jié)構(gòu)以實(shí)現(xiàn)乙醇電氧化中有效的 C-C 裂解。

25.Influence of Orbital Character on the Ground State Electronic Properties in the van Der Waals Transition Metal Iodides VI3 and CrI3.

軌道特性對(duì)范德華過渡金屬碘化物 VI3 和 CrI3 基態(tài)電子性質(zhì)的影響。

26.Activating Ultrahigh Thermoresponsive Upconversion in an Erbium Sublattice for Nanothermometry and Information Security.

激活鉺亞晶格中的超高熱響應(yīng)上轉(zhuǎn)換,用于納米測(cè)溫和信息安全。

27.Small Charging Energies and g-Factor Anisotropy in PbTe Quantum Dots.

PbTe 量子點(diǎn)中的小充電能量和 g 因子各向異性。

28.Biomimetic Neutrophil Nanotoxoids Elicit Potent Immunity against Acinetobacter baumannii in Multiple Models of Infection.

仿生中性粒細(xì)胞納米類毒素在多種感染模型中引發(fā)針對(duì)鮑曼不動(dòng)桿菌的有效免疫。

29.Strain Modified Oxygen Evolution Reaction Performance in Epitaxial, Freestanding, and Van Der Waals Manganite Thin Films.

外延薄膜、獨(dú)立式薄膜和范德華錳氧化物薄膜中應(yīng)變改性的析氧反應(yīng)性能。

30.Dynamical Stabilization of Multiplet Supercurrents in Multiterminal Josephson Junctions.

多端約瑟夫森結(jié)中多重超電流的動(dòng)態(tài)穩(wěn)定性。

31.Electronic Signature of Subnanometer Interfacial Broadening in Heterostructures.

異質(zhì)結(jié)構(gòu)中亞納米界面展寬的電子簽名。

32.Genesis of Nanogalvanic Corrosion Revealed in Pearlitic Steel.

珠光體鋼中納米電偶腐蝕的成因。

33.Lowering Contact Resistances of Two-Dimensional Semiconductors by Memristive Forming.

通過憶阻成型降低二維半導(dǎo)體的接觸電阻。

34.Colossal Room-Temperature Ferroelectric Polarizations in SrTiO3/SrRuO3 Superlattices Induced by Oxygen Vacancies.

氧空位引起的 SrTiO3/SrRuO3 超晶格中巨大的室溫鐵電極化。

35.Coevaporation Stabilizes Tin-Based Perovskites in a Single Sn-Oxidation State.

共蒸發(fā)使錫基鈣鈦礦穩(wěn)定在單一錫氧化態(tài)。

36.Controlling Nanoparticle Uptake in Innate Immune Cells with Heparosan Polysaccharides.

用 Heparosan 多糖控制先天免疫細(xì)胞中納米顆粒的攝取。

37.Laser Cooling of a Lattice Vibration in van der Waals Semiconductor.

范德華半導(dǎo)體晶格振動(dòng)的激光冷卻。

38.Exploiting Dynamic Nonlinearity in Upconversion Nanoparticles for Super-Resolution Imaging.

利用上轉(zhuǎn)換納米粒子的動(dòng)態(tài)非線性進(jìn)行超分辨率成像。

39.Single-Atom-Kernelled Nanocluster Catalyst.

單原子核納米團(tuán)簇催化劑。

40.Tunable Noninteger Flux Quantum of Vortices in Superconducting Strips.

超導(dǎo)帶中渦旋的可調(diào)諧非整數(shù)通量量子。

41.Polarization-Resolved Electron Energy Gain Nanospectroscopy With Phase-Structured Electron Beams.

使用相結(jié)構(gòu)電子束的偏振分辨電子能量增益納米光譜。

42.Gate-Tunable Anomalous Hall Effect in a 3D Topological Insulator/2D Magnet van der Waals Heterostructure.

3D 拓?fù)浣^緣體/2D 磁體范德華異質(zhì)結(jié)構(gòu)中的柵極可調(diào)反?;魻栃?yīng)。

43.Probing Heterogeneous Folding Pathways of DNA Origami Self-Assembly at the Molecular Level with Atomic Force Microscopy.

用原子力顯微鏡在分子水平上探測(cè) DNA 折紙自組裝的異質(zhì)折疊途徑。

44.Two-Dimensional Mechanics of Atomically Thin Solids on Water.

水上原子薄固體的二維力學(xué)。

45.Active Control of Interface Dynamics in NASICON-Based Rechargeable Solid-State Sodium Batteries.

基于 NASICON 的可充電固態(tài)鈉電池中界面動(dòng)力學(xué)的主動(dòng)控制。

46.Intrinsic Carrier Diffusion in Perovskite Thin Films Uncovered by Transient Reflectance Spectroscopy.

瞬態(tài)反射光譜揭示鈣鈦礦薄膜中的本征載流子擴(kuò)散。

47.Chiral Carbon Dots Derived from Serine with Well-Defined Structure and Enantioselective Catalytic Activity.

絲氨酸衍生的手性碳點(diǎn),具有明確的結(jié)構(gòu)和對(duì)映選擇性催化活性。

48.Saving 80% Polypropylene in Facemasks by Laser-Assisted Melt-Blown Nanofibers.

通過激光輔助熔噴納米纖維在口罩中節(jié)省 80% 的聚丙烯。

49.Novel Cocktail Therapy Based on a Nanocarrier with an Efficient Transcytosis Property Reverses the Dynamically Deteriorating Tumor Microenvironment for Enhanced Immunotherapy.

基于具有高效轉(zhuǎn)胞吞特性的納米載體的新型雞尾酒療法可逆轉(zhuǎn)動(dòng)態(tài)惡化的腫瘤微環(huán)境,從而增強(qiáng)免疫治療。

50.Layer-Number Engineered Momentum-Indirect Interlayer Excitons with Large Spectral Tunability.

具有大光譜可調(diào)性的層數(shù)工程動(dòng)量-間接層間激子。

51.Yttrium- and Cerium-Codoped Ultrathin Metal–Organic Framework Nanosheet Arrays for High-Efficiency Electrocatalytic Overall Water Splitting.

釔和鈰共摻雜超薄金屬有機(jī)框架納米片陣列,用于高效電催化整體水分解。

52.High-Performance Flexible Polymer Memristor Based on Stable Filamentary Switching.

基于穩(wěn)定絲狀開關(guān)的高性能柔性聚合物憶阻器。

53.Collective Mid-Infrared Vibrations in Surface-Enhanced Raman Scattering.

表面增強(qiáng)拉曼散射中的集體中紅外振動(dòng)。

54.Tuning of the Valley Structures in Monolayer In2Se3/WSe2 Heterostructures via Ferroelectricity.

通過鐵電調(diào)節(jié)單層 In2Se3/WSe2 異質(zhì)結(jié)構(gòu)中的谷結(jié)構(gòu)。

55.Construction of Spatially Separated Gold Nanocrystal/Cuprous Oxide Architecture for Plasmon-Driven CO2 Reduction.

構(gòu)建空間分離的金納米晶體/氧化亞銅結(jié)構(gòu),用于等離激元驅(qū)動(dòng)的二氧化碳還原。

56.Artificial Tactile Sensing System with Photoelectric Output for High Accuracy Haptic Texture Recognition and Parallel Information Processing.

具有光電輸出的人工觸覺傳感系統(tǒng),用于高精度觸覺紋理識(shí)別和并行信息處理。

57.Correction to Intracellular Fate of Nanoparticles with Polydopamine Surface Engineering and a Novel Strategy for Anti-Exocytosis Enhanced, Lysosome Impairment-Based Cancer Therapy.

用聚多巴胺表面工程校正納米顆粒的細(xì)胞內(nèi)命運(yùn),以及抗胞吐作用增強(qiáng)、基于溶酶體損傷的癌癥治療的新策略。

58.Unlocking Long-Term Stability of Upconversion Nanoparticles with Biocompatible Phosphonate-Based Polymer Coatings.

使用生物相容性膦酸酯基聚合物涂層解鎖上轉(zhuǎn)換納米顆粒的長(zhǎng)期穩(wěn)定性。

59.Single-Nitrogen–Vacancy NMR of Amine-Functionalized Diamond Surfaces.

胺官能化金剛石表面的單氮空位核磁共振。

60.DC Signature of Snap-through Bistability in Carbon Nanotube Mechanical Resonators.

碳納米管機(jī)械諧振器中突彈雙穩(wěn)態(tài)的直流特征。

61.Efficient H2 Evolution Coupled with Anodic Oxidation of Iodide over Defective Carbon-Supported Single-Atom Mo-N4 Electrocatalyst.

在有缺陷的碳支撐單原子 Mo-N4 電催化劑上高效析氫與碘化物陽極氧化相結(jié)合。

62.Migration and 3D Traction Force Measurements inside Compliant Microchannels.

兼容微通道內(nèi)的遷移和 3D 牽引力測(cè)量。

63.Uniaxial Strain and Hydrostatic Pressure Engineering of the Hidden Magnetism in La1–xCaxMnO3 (0 ≤ x ≤ 1/2) Thin Films.

La1–xCaxMnO3 (0 ≤ x ≤ 1/2) 薄膜中隱藏磁性的單軸應(yīng)變和靜水壓力工程。

64.Homogeneous Lateral Lithium Intercalation into Transition Metal Dichalcogenides via Ion Backgating.

通過離子背柵均勻橫向鋰嵌入過渡金屬二硫?qū)倩铩?/p>

65.Resonant Plasmonic–Biomolecular Chiral Interactions in the Far-Ultraviolet: Enantiomeric Discrimination of sub-10 nm Amino Acid Films.

遠(yuǎn)紫外線中的共振等離子體-生物分子手性相互作用:亞 10 nm 氨基酸薄膜的對(duì)映體辨別。

66.Coupling Capacitively Distinct Mechanical Resonators for Room-Temperature Phonon-Cavity Electromechanics.

用于室溫聲子腔機(jī)電的電容耦合不同機(jī)械諧振器。

67.Ultralow Index SiO2 Antireflection Coatings Produced via Magnetron Sputtering.

通過磁控濺射生產(chǎn)的超低折射率 SiO2 減反射涂層。

68.Optical Sensing of Fractional Quantum Hall Effect in Graphene.

石墨烯中分?jǐn)?shù)量子霍爾效應(yīng)的光學(xué)傳感。

69.Strong yet Ductile High Entropy Alloy Derived Nanostructured Cermet.

堅(jiān)固且具有延展性的高熵合金衍生的納米結(jié)構(gòu)金屬陶瓷。

70.Impact of Electric Field Disorder on Broken-Symmetry States in Ultraclean Bilayer Graphene.

電場(chǎng)無序?qū)Τ瑑綦p層石墨烯破缺對(duì)稱態(tài)的影響。

71.Three-Dimensional Fe Single-Atom Catalyst for High-Performance Cathode of Zn–Air Batteries.

用于高性能鋅空氣電池正極的三維鐵單原子催化劑。

72.Three-Dimensional Confinement of Water: H2O Exhibits Long-Range (>50 nm) Structure while D2O Does Not.

水的三維限制:H2O 表現(xiàn)出長(zhǎng)程 (>50 nm) 結(jié)構(gòu),而 D2O 則不然。

73.Ultralocalized Optoelectronic Properties of Nanobubbles in 2D Semiconductors.

二維半導(dǎo)體中納米氣泡的超局域光電特性。

74.Friction Induces Anisotropic Propulsion in Sliding Magnetic Microtriangles.

摩擦力在滑動(dòng)磁性微三角形中引起各向異性推進(jìn)。

75.Magnetogenetics with Piezo1 Mechanosensitive Ion Channel for CRISPR Gene Editing.

使用 Piezo1 機(jī)械敏感離子通道進(jìn)行 CRISPR 基因編輯的磁遺傳學(xué)。

76.Using Single-Crystal Graphene to Form Arrays of Nanocapsules Enabling the Observation of Light Elements in Liquid Cell Transmission Electron Microscopy.

使用單晶石墨烯形成納米膠囊陣列,能夠在液體電池透射電子顯微鏡中觀察輕元素。

77.Patterning at the Resolution Limit of Commercial Electron Beam Lithography.

在商業(yè)電子束光刻分辨率極限下進(jìn)行圖案化。

78.The Giant Spin-to-Charge Conversion of the Layered Rashba Material BiTeI.

層狀 Rashba 材料 BiTeI 的巨大自旋到電荷轉(zhuǎn)換。

79.Suppression of Phase Transitions in Perovskite Thin Films through Cryogenic Electron Beam Irradiation.

通過低溫電子束輻照抑制鈣鈦礦薄膜中的相變。

80.Combining Freestanding Ferroelectric Perovskite Oxides with Two-Dimensional Semiconductors for High Performance Transistors.

將獨(dú)立式鐵電鈣鈦礦氧化物與二維半導(dǎo)體相結(jié)合,打造高性能晶體管。

81.Scalable Nanotrap Matrix Enhanced Electroporation for Intracellular Recording of Action Potential.

可擴(kuò)展的 Nanotrap 基質(zhì)增強(qiáng)電穿孔用于細(xì)胞內(nèi)動(dòng)作電位記錄。

82.LiNi0.5Mn1.5O4 Cathode Microstructure for All-Solid-State Batteries.

全固態(tài)電池LiNi0.5Mn1.5O4正極微觀結(jié)構(gòu)。

83.Can Light Alter the Yield of Plasmon-Driven Reactions on Gold and Gold–Palladium Nanoplates?.

光可以改變金和金-鈀納米片上等離激元驅(qū)動(dòng)反應(yīng)的產(chǎn)率嗎?

84.Ultrasensitive Anisotropic Room-Temperature Terahertz Photodetector Based on an Intrinsic Magnetic Topological Insulator MnBi2Te4.

基于本征磁拓?fù)浣^緣體 MnBi2Te4 的超靈敏各向異性室溫太赫茲光電探測(cè)器。

85.Disentangling the Orientations of Spectrally Overlapping Transition Dipoles in Dense Dye Layers.

解開密集染料層中光譜重疊躍遷偶極子的方向。

86.Using Nanoscopic Solvent Defects for the Spatial and Temporal Manipulation of Single Assemblies of Molecules.

利用納米溶劑缺陷對(duì)單個(gè)分子組裝體進(jìn)行空間和時(shí)間操縱。

87.Electric Fields and Charge Separation for Solid Oxide Fuel Cell Electrodes.

固體氧化物燃料電池電極的電場(chǎng)和電荷分離。

88.Superconducting Fourfold Fe(Te,Se) Film on Sixfold Magnetic MnTe via Hybrid Symmetry Epitaxy.

通過混合對(duì)稱外延在六重磁性 MnTe 上形成超導(dǎo)四重 Fe(Te,Se) 薄膜。

89.Reacquainting the Sudden-Death and Reaction Routes of Li–O2 Batteries by Ex Situ Observation of Li2O2 Distribution Inside a Highly Ordered Air Electrode.

通過對(duì)高度有序空氣電極內(nèi) Li2O2 分布的異位觀察,重新認(rèn)識(shí) Li-O2 電池的猝死和反應(yīng)路線。

90.Localized Hydrophobicity in Aqueous Zinc Electrolytes Improves Zinc Metal Reversibility.

水性鋅電解質(zhì)的局部疏水性提高了鋅金屬的可逆性。

===============================

由于專欄圖片數(shù)量限制,關(guān)注我的個(gè)人公眾號(hào)“遠(yuǎn)夢(mèng)研”查看更多。

【標(biāo)題速讀】【Nano_letter】【2022年】【9月】的評(píng)論 (共 條)

分享到微博請(qǐng)遵守國(guó)家法律
瑞昌市| 库车县| 仁布县| 宁安市| 临湘市| 灵寿县| 石渠县| 鱼台县| 杭州市| 榆社县| 通道| 岑溪市| 武陟县| 德清县| 新疆| 南皮县| 叙永县| 淮安市| 仁布县| 祁连县| 任丘市| 池州市| 象山县| 云南省| 宜兴市| 富民县| 岳西县| 射阳县| 茌平县| 马公市| 松江区| 万载县| 怀宁县| 贵州省| 尚义县| 福州市| 桑日县| 涿州市| 济宁市| 绥滨县| 永州市|