就 網(wǎng)上視頻 提到的定理 即 倍角定理 與 張角定理 之證明

有
B=2C
即
B/2-C=0
即
sin(B/2-C)=0
即
sin(B/2)cosC-cos(B/2)sinC=0
即
sin(B/2)cosC+cos(B/2)sinC
=
2sin(B/2)cosC
即
sin((B+2C)/2)
=
2sin(B/2)cosC
即
cosC
=
sin((B+2C)/2)
/
2sin(B/2)
=
cos((A-C)/2)
/
2sin(B/2)
=
sin((A+C)/2)cos((A-C)/2)
/
sinB
=
sinA+sinC
/
2sinB
=
a+c
/
2b
即
a+c
/
2b
=
a2+b2-c2
/
2ab
即
b2=ac+c2
即
b2=c(a+c)
得證

設(shè)
ΔABD與ΔACD
AD邊上的高分別為h1與h2
有
SΔABC=SΔABD+SΔSCD
即
1/2·AB·AC·sin∠BAC
=
1/2·AD(h1+h2)
即
sin∠BAC
/
AD
=
h2+h1
/
AB·AC
即
sin∠BAC/AD
=
sin∠CAD·AC+sin∠BAD·AB
/
AB·AC
即
sin∠BAC/AD
=
sin∠CAD/AB
+
sin∠BAD/AC
得證
標(biāo)簽: