最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網(wǎng) 會(huì)員登陸 & 注冊(cè)

PyTorch Tutorial 10 - Dataset Transfo...

2023-02-16 16:23 作者:Mr-南喬  | 我要投稿

教程Python代碼如下:


"""

epoch = 1 forward and backward pass of ALL training samples

batch_size = numberlof training samples in one forward & backward pass

number of iterations = number of passes,each pass using [batch_size] number of samples

e.g. 100 samples,batch_size=20 --> 100/20 = 5 iterations for 1 epoch

"""

import torch

import torchvision

from torch.utils.data import Dataset, DataLoader

import numpy as np

import math


#實(shí)現(xiàn)自己的自定義數(shù)據(jù)集

class WineDataset():

??def __init__(self, tranform = None):

????# data loading, 數(shù)據(jù)加載

????xy = np.loadtxt('./Data/wine.csv',delimiter=",", dtype=np.float32, skiprows=1) #delomiter分隔符,skiprows=1跳過(guò)第一行(第一行為標(biāo)題)

????self.n_samples = xy.shape[0]


????# 把數(shù)據(jù)集分成 x 和 y,note that we do not convert to tensor here

????self.x = xy[:,1:] #不要第一行

????self.y = xy[:, [0]] # n_samples, 1:只要第一列,這樣就有了樣品的大小數(shù)


????self.transform = tranform


??def __getitem__(self, index):

????sample = self.x[index], self.y[index]


????if self.transform:

??????sample = self.transform(sample)


????return sample


??def __len__(self):

????# len(dataset), 調(diào)用數(shù)據(jù)集的長(zhǎng)度

????return self.n_samples


# 類方法對(duì)類屬性進(jìn)行的處理是有記憶性的

class ToTensor:

??def __call__(self, sample):

????inputs, targets = sample

????return torch.from_numpy(inputs),torch.from_numpy(targets)


class MulTransform:

??def __init__(self, factor):

????self.factor = factor


??def __call__(self, sample):

????inputs, target = sample

????inputs *= self.factor

????return?inputs, target


dataset = WineDataset(tranform=ToTensor())

first_data = dataset[0]

feautres, labels = first_data

print(feautres)

print(type(feautres), type(labels))


dataset = WineDataset(tranform=None)

first_data = dataset[0]

feautres, labels = first_data

print(feautres)

print(type(feautres), type(labels))


print("\n" + "composed")

composed = torchvision.transforms.Compose([ToTensor(),MulTransform(4)])

dataset = WineDataset(tranform=composed)

first_data = dataset[0]

feautres, labels = first_data

print(feautres)

print(type(feautres), type(labels))

PyTorch Tutorial 10 - Dataset Transfo...的評(píng)論 (共 條)

分享到微博請(qǐng)遵守國(guó)家法律
新蔡县| 甘南县| 兴业县| 邹城市| 白银市| 清徐县| 吴堡县| 密云县| 台东市| 留坝县| 西林县| 阳春市| 翼城县| 萍乡市| 射阳县| 乐安县| 合川市| 龙游县| 黄龙县| 来凤县| 阜城县| 湖南省| 丰台区| 阿勒泰市| 宁阳县| 晋宁县| 嵩明县| 武陟县| 和平区| 克东县| 宜兴市| 南康市| 武功县| 黄山市| 津市市| 漳平市| 仁布县| 镇沅| 互助| 开原市| 公安县|