migarney mathematics
migarney mathematics
migarney數(shù)學(xué)???
1. the set structure of closed function .
1?封閉式函數(shù)的集合構(gòu)造
2. the set structure of open function .
2?開放式函數(shù)的集合構(gòu)造
3. the logic structure of logic mathematics is grammar structure . the logic object of logic mathematics is morpheme elements
3?邏輯數(shù)學(xué)的邏輯架構(gòu)是語(yǔ)法結(jié)構(gòu),邏輯數(shù)學(xué)的邏輯對(duì)象是詞素構(gòu)件
4. the perfect solved method is logic of paradox.
the changing of logic feature is appearing through that having many transition and projection about reference systems .
4??邏輯悖論的完美解決方法
參考系的過(guò)渡投影發(fā)生邏輯特征的轉(zhuǎn)變
5. the nature source of Valid reasoning and decision in logic mathematics is that the true decision of event structure in logic structure and logic object .
5??邏輯數(shù)學(xué)中的有效推理形式的產(chǎn)生來(lái)源是邏輯架構(gòu)和邏輯對(duì)象的事件構(gòu)成的真實(shí)性判定
6. the calculus and differential equation are false science due to the variate meaning is very indistinct .
6??由于微積分和微分方程的變量指代模糊,所以微積分和微分方程是錯(cuò)誤的學(xué)科
the define of integral calculus about Newton in Britain.
英國(guó)物理學(xué)家牛頓的積分學(xué)的定義:
∫ g{a} da =G{a}
=g{a.1}×((a.2)-(a.1))
+...+g{a.(n-1)}
×((a.n)-(a.(n-1)))
or =g{a.1}×Δ+...
+g{(a.1)+(n-2)Δ}
×Δ
?
其中: ((a.n)-(a.(n-1)))?0
其中:Δ?0
but it is have no said that the true meaning of variate a from function G{a} in the define of integral calculus about Newton in Britain.that is it is have no said variate a from function G{a} is rely on which variate in set variate <(∑⊕).n>a.n in the define of integral calculus about Newton in Britain. or it is have no said variate a from function G{a} is rely on which variate in set variate <(∑⊕).n>(a.1+(n-1)Δ) in the define of integral calculus about Newton in Britain .
但是在英國(guó)物理學(xué)家牛頓的積分學(xué)的定義中沒有指出G{a}函數(shù)中的變量a的真正的含義。也就是說(shuō),英國(guó)物理學(xué)家牛頓的積分學(xué)沒有指出G{a}函數(shù)是依賴于
集合變量<(∑⊕).n>a.n中的哪一個(gè)的變量。
或者,英國(guó)物理學(xué)家牛頓的積分學(xué)沒有指出G{a}函數(shù)是依賴于集合變量
<(∑⊕).n>(a.1+(n-1)Δ)中的哪一個(gè)的變量。
7. the calculation law of migarney set mathematics.
7?
migarney集合數(shù)學(xué)的運(yùn)算法則(修改版本)
①?H==(<(∑⊕).u>g.u)か(<(∑⊕).u>f.u)
==(<(∑⊕).u>((g.u)+(f.u)))
②?H==(<(∑⊕).u>g.u)け(<(∑⊕).u>f.u)
==(<(∑⊕).u>((g.u)-(f.u)))
③?H==(<(∑⊕).u>g.u)と(<(∑⊕).u>f.u)
==(<(∑⊕).u>((g.u)×(f.u)))
④?H==(<(∑⊕).u>g.u)す(<(∑⊕).u>f.u)
==(<(∑⊕).u>((g.u)/(f.u)))
⑤?H==(<(∑⊕).u>g.u)が(<(∑⊕).v>f.v)
==(<(∑⊕).u@v>((g.u)+(f.v)))
⑥?H==(<(∑⊕).u>g.u)げ(<(∑⊕).v>f.v)
==(<(∑⊕).u@v>((g.u)-(f.v)))
⑦?H==(<(∑⊕).u>g.u)ど(<(∑⊕).v>f.v)
==(<(∑⊕).u@v>((g.u)×(f.v)))
⑧??H==(<(∑⊕).u>g.u)ず(<(∑⊕).v>f.v)
==(<(∑⊕).u@v>((g.u)/(f.v)))
⑨??M==(<(∑⊕).u@v>((g.u)+(f.v)))ケ
(<(∑⊕).u>g.u)==(<(∑⊕).v>f.v)
⑩??M==(<(∑⊕).u@v>((g.u)-(f.v)))カ
(<(∑⊕).v>f.v)==(<(∑⊕).u>g.u)
⑩_①??M==(<(∑⊕).u@v>((g.u)×(f.v)))ス
(<(∑⊕).v>f.v)==(<(∑⊕).u>g.u)
⑩_②?M==(<(∑⊕).u@v>((g.u)/(f.v)))ト
(<(∑⊕).v>f.v)==(<(∑⊕).u>g.u)
8. the direction and reference systems is relative in the migarney set mathematics. so under the condition that the processes of having many transition and converting in the direction and reference systems . the character , that it had many expression to original feature in the original direction and original reference systems, need to have to become all of new expression of the new feature in the new direction and new reference systems for being able to have all of calculation. but the character is still the character forever and only . the nature form of character having no changing forever and only.
8??集合數(shù)學(xué)中的參考系和方向都是相對(duì)的,所以在參考系和方向的過(guò)渡轉(zhuǎn)換的過(guò)程中,性狀在原參考系和原方向所表達(dá)的原特征需要經(jīng)過(guò)投影變換到新參考系和新方向之后在表達(dá)了新參考系和新方向的新特征之后才能夠在新參考系和新方向上面進(jìn)行耦合計(jì)算。但是性狀的本質(zhì)類型不發(fā)生改變,性狀還是性狀。
9. the feature of set function in set mathematics .
9?集合數(shù)學(xué)的集合函數(shù)形式
<[system A -> direction B] and (∑⊕).u>f.u
the works copyright content and the worker information (作品的版權(quán)內(nèi)容和作者信息):
my English name is :
migarney Pierpont Tesla Morgan Rothschild
my Japanese name is : みがに
my Chinese name is : 劉文宇
address now :
中國(guó)福建省福州市長(zhǎng)樂區(qū)金峰鎮(zhèn)華劉村
中國(guó)福建省福州市長(zhǎng)樂區(qū)鶴上鎮(zhèn)洞湖黃朱村
pictures to be continue .......