最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網(wǎng) 會(huì)員登陸 & 注冊(cè)

Prime Dream(1)——素?cái)?shù)計(jì)數(shù)函數(shù)與它的階

2022-01-30 00:12 作者:子瞻Louis  | 我要投稿

專欄文集:《雜文集》《數(shù)學(xué)分析》

本系列文集:《Prime Dream》

許多數(shù)論的研究大多都是圍繞素?cái)?shù)展開的,而與之相關(guān)的自然是素?cái)?shù)計(jì)數(shù)函數(shù):

%5Cpi(x)%3D%5Csum_%7Bp%5Cle%20x%7D1

上和號(hào)是對(duì)不大于x的素?cái)?shù)求和,也就是說該函數(shù)用來表示不大于x的素?cái)?shù)個(gè)數(shù),開始之前還要再引入兩個(gè)函數(shù)——切比雪夫theta、psi函數(shù):(x%3E1

%5Cvartheta(x)%3D%5Csum_%7Bn%5Cle%20x%7D%5Clog%20p

%5Cpsi(x)%3D%5Csum_%7Bn%5Cle%20x%7D%5CLambda(n)

Dirichlet卷積的部分和

令*表示Dirichlet卷積,設(shè)

F(x)%3D%5Csum_%7Bn%5Cle%20x%7Df(n)%2CG(x)%3D%5Csum_%7Bn%5Cle%20x%7Dg(n)

考慮以下和式,

%5Cbegin%7Baligned%7DS(x)%26%3D%5Csum_%7Bn%5Cle%20x%7Df*g(n)%5C%5C%26%3D%5Csum_%7Bn%5Cle%20x%7D%5Csum_%7Bn%3Dab%7Df(a)g(b)%5C%5C%26%3D%5Csum_%7Bab%5Cle%20x%7Df(a)g(b)%5Cend%7Baligned%7D

可以在上式的求和中先固定a,對(duì)所有b求和,再對(duì)所有a求和,得到

%5Cbegin%7Baligned%7DS(x)%26%3D%5Csum_%7Ba%5Cle%20x%7Df(a)%5Csum_%7Bb%5Cle%5Cfrac%20xa%7Dg(b)%5C%5C%26%3D%5Csum_%7Bn%5Cle%20x%7Df(n)G%5Cleft(%5Cfrac%20xn%5Cright)%5Cend%7Baligned%7D

同理,也可得

S(x)%3D%5Csum_%7Bn%5Cle%20x%7Dg(n)F%5Cleft(%5Cfrac%20xn%5Cright)

特別地取f(n)%3D1(n)%5Cequiv1,得到

%5Csum_%7Bn%5Cle%20x%7Df(n)%5Cleft%5B%5Cfrac%20xn%5Cright%5D%3D%5Csum_%7Bn%5Cle%20x%7D%5Ctilde%7Bf%7D%20(n)

其中%5Ctilde%20f(n)f(n)的Mobius變換,將Von?Mongoldt函數(shù)代入,可得

  • 1)%5Clog%20%5Bx%5D!%3D%5Csum_%7Bn%5Cle%20x%7D%5CLambda(n)%5Cleft%5B%5Cfrac%20xn%5Cright%5D

x%3Dm為整數(shù),將右邊改寫一下

%5Cbegin%7Baligned%7D%5Clog%20m!%26%3D%5Csum_%7Bp%5Ek%5Cle%20m%7D%5Clog%20p%5Cleft%5B%5Cfrac%20m%7Bp%5Ek%7D%5Cright%5D%5C%5C%26%3D%5Csum_%7Bp%5Cle%20m%7D%5Csum_%7Bk%3D1%7D%5E%5Cinfty%5Cleft%5B%5Cfrac%20m%7Bp%5Ek%7D%5Cright%5D%5Clog%20p%5Cend%7Baligned%7D

最后一個(gè)等式內(nèi)層的求和總是只有限項(xiàng)不為零的,因此可以得到階乘的素因子分解

  • 2)m!%3D%5Cprod_%7Bp%5Cle%20x%7Dp%5E%7BA(m%2Cp)%7D%2CA(m%2Cp)%3D%5Csum_%7Bk%3D1%7D%5E%5Cinfty%5Cleft%5B%5Cfrac%20x%7Bp%5Ek%7D%5Cright%5D

具有特殊階的部分和

對(duì)階乘的對(duì)數(shù)用Able求和公式可得

%5Cbegin%7Baligned%7D%5Clog%5Bx%5D!%26%3D%5Csum_%7Bn%5Cle%20x%7D%5Clog%20n%3D%5Bx%5D%5Clog%20x-%5Cint_1%5Ex%5Cfrac%7B%5Bt%5D%7Dt%5Cmathrm%20dt%5C%5C%26%3Dx%5Clog%20x-x%2B1-%5C%7Bx%5C%7D%5Clog%20x%2B%5Cint_1%5Ex%5Cfrac%7B%5C%7Bt%5C%7D%7Dt%5Cmathrm%20dt%5C%5C%26%3Dx%5Clog%20x-x%2B%5Cmathcal%20O(%5Clog%20x)%5Cend%7Baligned%7D

這也就是說

  • 3)%5Csum_%7Bn%5Cle%20x%7D%5CLambda(n)%5Cleft%5B%5Cfrac%20xn%5Cright%5D%3Dx%5Clog%20x-x%2B%5Cmathcal%20O(%5Clog%20x)

將左式分為素?cái)?shù)和素?cái)?shù)的乘方,

%5Csum_%7Bn%5Cle%20x%7D%5CLambda(n)%5Cleft%5B%5Cfrac%20xn%5Cright%5D%3D%5Csum_%7Bp%5Cle%20x%7D%5Clog%20p%5Cleft%5B%5Cfrac%20xp%5Cright%5D%2B%5Csum_%7Bp%5Cle%20x%7D%5Csum_%7Bk%3D2%7D%5E%5Cinfty%5Cleft%5B%5Cfrac%20x%7Bp%5Ek%7D%5Cright%5D%5Clog%20p

來康康第二項(xiàng),對(duì)它放縮一下

%5Cbegin%7Baligned%7D%5Csum_%7Bp%5Cle%20x%7D%5Csum_%7Bk%3D2%7D%5E%5Cinfty%5Cleft%5B%5Cfrac%20x%7Bp%5Ek%7D%5Cright%5D%5Clog%20p%26%3C%20%5Csum_%7Bp%5Cle%20x%7D%5Csum_%7Bk%3D2%7D%5E%5Cinfty%20%5Cfrac%20x%7Bp%5Ek%7D%5Clog%20p%5C%5C%26%3Dx%5Csum_%7Bp%5Cle%20x%7D%5Cfrac%7B%5Clog%20p%7D%7Bp(p-1)%7D%5C%5C%26%3Cx%5Csum_%7Bn%3D2%7D%5E%5Cinfty%5Cfrac%7B%5Clog%20n%7D%7Bn(n-1)%7D%5Cend%7Baligned%7D

可以驗(yàn)證最后一個(gè)級(jí)數(shù)是收斂到某個(gè)不大于%5Clog4的常數(shù):

%5Cbegin%7Baligned%7D%5Csum_%7Bn%3D2%7D%5E%5Cinfty%5Cfrac%7B%5Clog%20n%7D%7Bn(n-1)%7D%26%3C%5Csum_%7Br%3D1%7D%5E%5Cinfty%5Csum_%7B2%5Er%3Cm%5Cle%202%5E%7Br%2B1%7D%7D%5Cfrac%7B%5Clog%202%5Er%7D%7Bm(m-1)%7D%5C%5C%26%3D%5Csum_%7Br%3D1%7D%5E%5Cinfty%7Br%5Clog%202%7D%5Csum_%7B2%5Er%3Cm%5Cle%202%5E%7Br%2B1%7D%7D%5Cfrac1%7Bm-1%7D-%5Cfrac1m%5C%5C%26%3D%5Csum_%7Br%3D1%7D%5E%5Cinfty%5Cfrac%7Br%5Clog2%7D%7B2%5Er%7D%3D%5Clog4%5Cend%7Baligned%7D

因此可以得到

%5Csum_%7Bn%5Cle%20x%7D%5CLambda(n)%5Cleft%5B%5Cfrac%20xn%5Cright%5D%3D%5Csum_%7Bp%5Cle%20x%7D%5Clog%20p%5Cleft%5B%5Cfrac%20xp%5Cright%5D%2B%5Cmathcal%20O(x)

  • 4)%5Csum_%7Bp%5Cle%20x%7D%5Clog%20p%5Cleft%5B%5Cfrac%20xp%5Cright%5D%3Dx%5Clog%20x%2B%5Cmathcal%20O(x)

Sharpiro Tauber型定理

既然這兩個(gè)部分和的階是差不多的,那我們直接來研究以下形式的和吧

  1. G(x)%3D%5Csum_%7Bn%5Cle%20x%7Df(n)%5Cleft%5B%5Cfrac%20xn%5Cright%5D%3Dx%5Clog%20x%2B%5Cmathcal%20O(x)

  2. F(x)%3D%5Csum_%7Bn%5Cle%20x%7Df(n)

  3. S(x)%3D%5Csum_%7Bn%5Cle%20x%7D%5Cfrac%7Bf(n)%7Dn

我們想利用1.式來得到2.式的階,首要任務(wù)就是解決掉取整的部分,注意到當(dāng)x%2F2%3Cn%3Cx時(shí),都有%5Cleft%5B%5Cfrac%20xn%5Cright%5D%3D1,因此通過以下作差可以就可以讓2.式出現(xiàn)

%5Cbegin%7Baligned%7DG(x)-2G%5Cleft(%5Cfrac%20x2%5Cright)%26%3D%5Csum_%7Bn%5Cle%20x%2F2%7Df(n)%5Cleft(%5Cleft%5B%5Cfrac%20xn%5Cright%5D-2%5Cleft%5B%5Cfrac%20x%7B2n%7D%5Cright%5D%5Cright)%2B%5Csum_%7Bx%2F2%3Cn%5Cle%20x%7Df(n)%5Cleft%5B%5Cfrac%20xn%5Cright%5D%5C%5C%26%3D%5Csum_%7Bn%5Cle%20x%2F2%7Df(n)%5Cleft(%5Cleft%5B%5Cfrac%20xn%5Cright%5D-2%5Cleft%5B%5Cfrac%20x%7B2n%7D%5Cright%5D%5Cright)%2BF(x)-F%5Cleft(%5Cfrac%20x2%5Cright)%5Cend%7Baligned%7D

對(duì)任意t%3E0,%5Bt%5D-2%5Bt%2F2%5D或?yàn)?或?yàn)?,所以得到

G(x)-2G%5Cleft(%5Cfrac%20x2%5Cright)%5Cge%20F(x)-F%5Cleft(%5Cfrac%20x2%5Cright)

又根據(jù)1.式G(x)的階可知

%5Cbegin%7Baligned%7DG(x)-2G%5Cleft(%5Cfrac%20x2%5Cright)%26%3Dx%5Clog%20x-2%5Ccdot%5Cfrac%20x2%5Clog%5Cfrac%20x2%2B%5Cmathcal%20O(x)%5C%5C%26%3Dx%5Clog%20x-x%5Clog%20x%2B%5Cmathcal%20O(x)%5C%5C%26%3D%5Cmathcal%20O(x)%5Cend%7Baligned%7D

這也就是說存在某個(gè)常數(shù)C,使得

F(x)-F%5Cleft(%5Cfrac%20x2%5Cright)%5Cle%20G(x)-2G%5Cleft(%5Cfrac%20x2%5Cright)%5Cle%20Cx

不斷用%5Cfrac%20x2%2C%5Cfrac%20x4%2C%E2%80%A6替換掉x,得到

%5Cbegin%7Baligned%7DF%5Cleft(%5Cfrac%20x2%5Cright)-F%5Cleft(%5Cfrac%20x4%5Cright)%26%5Cle%20%5Cfrac12Cx%5C%5CF%5Cleft(%5Cfrac%20x4%5Cright)-F%5Cleft(%5Cfrac%20x8%5Cright)%26%5Cle%20%5Cfrac14Cx%5C%5C%26%E2%80%A6%5Cend%7Baligned%7D

把這些不等式依次加起來,便有

F(x)%5Cle%5Cleft(1%2B%5Cfrac12%2B%5Cfrac14%2B%E2%80%A6%5Cright)Cx%3D2Cx

于是可以得到

  • 5)%5Csum_%7Bn%5Cle%20x%7Df(n)%3D%5Cmathcal%20O(x)

下面來看另一個(gè)和,因?yàn)?img type="latex" class="latex" src="http://api.bilibili.com/x/web-frontend/mathjax/tex?formula=%5Bt%5D%3Dt%2B%5Cmathcal%20O(1)" alt="%5Bt%5D%3Dt%2B%5Cmathcal%20O(1)">,所以

%5Cbegin%7Baligned%7D%5Csum_%7Bn%5Cle%20x%7Df(n)%5Cleft%5B%5Cfrac%20xn%5Cright%5D%26%3Dx%5Csum_%7Bn%5Cle%20x%7D%5Cfrac%7Bf(n)%7Dn%2B%5Cmathcal%20O%5Cleft(%5Csum_%7Bn%5Cle%20x%7Df(n)%5Cright)%5C%5C%5CRightarrow%20x%5Clog%20x%2B%5Cmathcal%20O(x)%26%3Dx%5Csum_%7Bn%5Cle%20x%7D%5Cfrac%7Bf(n)%7Dn%2B%5Cmathcal%20O(x)%5Cend%7Baligned%7D

  • 6)%5Csum_%7Bn%5Cle%20x%7D%5Cfrac%7Bf(n)%7Dn%3D%5Clog%20x%2B%5Cmathcal%20O(1)

現(xiàn)在我們?cè)O(shè)S(x)%3D%5Csum_%7Bn%5Cle%20x%7D%5Cfrac%7Bf(n)%7Dn%3D%5Clog%20x%2BR(x),由6)式可知存在常數(shù)A使得%7CR(x)%7C%5Cle%20A,某一常數(shù)0%3Ca%3C1,使得

%5Cbegin%7Baligned%7DS(x)-S(ax)%26%3D%5Clog%20x%2BR(x)-%5Clog%20ax-R(ax)%5C%5C%26%3D-%5Clog%20a%2BR(x)-R(ax)%5C%5C%26%5Cge%20-%5Clog%20a-%7CR(x)%7C-%7CR(ax)%7C%5C%5C%26%5Cge-%5Clog%20a-2A%3D1%5Cend%7Baligned%7D

也就是說a%3De%5E%7B-2A-1%7D。因?yàn)镾(x)是定義在x%3E1上的,所以其中要求了ax%5Cge1。另一方面,有

%5Cbegin%7Baligned%7DS(x)-S(ax)%26%3D%5Csum_%7Bax%3Cn%5Cle%20x%7D%5Cfrac%7Bf(n)%7Dn%5C%5C%26%5Cle%5Cfrac1%7Bax%7D%5Csum_%7Bax%3Cn%5Cle%20x%7Df(n)%5C%5C%26%5Cle%5Cfrac1%7Bax%7DF(x)%5Cend%7Baligned%7D

結(jié)合上面兩個(gè)式子與5),就得到:對(duì)于%7CR(x)%7C%5Cle%20A,當(dāng)x%5Cge%20e%5E%7B2A%2B1%7D時(shí),都有存在兩個(gè)常數(shù)C_1%2CC_2,(其中C_1%3De%5E%7B-2A-1%7D是已經(jīng)確定的)

  • 7)C_1x%5Cle%5Csum_%7Bn%5Cle%20x%7Df(n)%5Cle%20C_2x

可以用大theta符號(hào)改寫一下:對(duì)于x%5Cge%20e%5E%7B2A%2B1%7D,都有

  • 7')%5Csum_%7Bn%5Cle%20x%7Df(n)%3D%5CTheta(x)

將上面得到的所有結(jié)論放在一起,便組成了Shaprio?Tauber型定理:若

G(x)%3D%5Csum_%7Bn%5Cle%20x%7Df(n)%5Cleft%5B%5Cfrac%20xn%5Cright%5D%3Dx%5Clog%20x%2B%5Cmathcal%20O(x)

則當(dāng)x足夠大時(shí),以下兩個(gè)漸進(jìn)公式成立:

  1. S(x)%3D%5Csum_%7Bn%5Cle%20x%7D%5Cfrac%7Bf(n)%7Dn%3D%5Clog%20x%2B%5Cmathcal%20O(1)

  2. C_1x%5Cle%20F(x)%3D%5Csum_%7Bn%5Cle%20x%7Df(n)%5Cle%20C_2x

其中C_1%3De%5E%7B-2A-1%7D,A為1.式中大O符號(hào)的絕對(duì)值上界

素?cái)?shù)計(jì)數(shù)函數(shù)的階

將4)式代入到Sharprio定理中,可得

  • 8)%5Csum_%7Bp%5Cle%20x%7D%5Cfrac%7B%5Clog%20p%7Dp%3D%5Clog%20x%2B%5Cmathcal%20O(1)

  • 9)%5Cvartheta(x)%3D%5Csum_%7Bp%5Cle%20x%7D%5Clog%20p%3D%5CTheta(x)

其中8)式就被稱為Mertens第一定理,根據(jù)右側(cè)當(dāng)x%5Cto%5Cinfty時(shí)是發(fā)散的,又能再次說明素?cái)?shù)有無窮多個(gè)。同樣將4)式代入也可得

  • 10)%5Csum_%7Bn%5Cle%20x%7D%5Cfrac%7B%5CLambda(n)%7Dn%3D%5Clog%20x%2B%5Cmathcal%20O(1)

  • 11)%5Cpsi(x)%3D%5Csum_%7Bn%5Cle%20x%7D%5CLambda(n)%3D%5CTheta(x)

接下來就是要得到素?cái)?shù)計(jì)數(shù)函數(shù)的階了,可以利用Able求和公式作以下變換:

%5Cbegin%7Baligned%7D%5Cpi(x)%26%3D%5Csum_%7B2-%5Cdelta%3Cp%5Cle%20x%7D%5Cfrac%7B%5Clog%20p%7D%7B%5Clog%20p%7D%5Cqquad(%5Cdelta%3E0)%5C%5C%26%3D%5Cfrac%7B%5Cvartheta(x)%7D%7B%5Clog%20x%7D%2B%5Cint_%7B2-%5Cdelta%7D%5Ex%5Cfrac%7B%5Cvartheta(t)%7D%7Bt%5Clog%5E2t%7D%5Cmathrm%20dt%5Cend%7Baligned%7D

將9)式代入,因?yàn)榉e分

0%5Cle%5Cint_2%5E%7Bx%7D%5Cfrac%7B%5Cmathrm%20dt%7D%7B%5Clog%5E2%20t%7D%3C%5Cfrac%7Bx%7D%7B%5Clog%5E2x%7D%3D%5Cmathcal%20O%5Cleft(%5Cfrac%20x%7B%5Clog%20x%7D%5Cright)

由此可以推出對(duì)于足夠大的x,存在兩個(gè)常數(shù)C_1%2CC_2

  • 12)%5Cfrac%7BC_1x%7D%7B%5Clog%20x%7D%5Cle%5Cpi(x)%5Cle%5Cfrac%7BC_2x%7D%7B%5Clog%20x%7D

并且我們還得到了以下極限不發(fā)散,

%5Clim_%7Bx%5Cto%5Cinfty%7D%5Cfrac%7B%5Cpi(x)%5Clog%20x%7D%7Bx%7D%3DA

上式的比值

參考

  1. 《Introduction to analytic number theory》by Tom M.Apostol

  2. 《數(shù)論中的求和公式》Abel求和法


Prime Dream(1)——素?cái)?shù)計(jì)數(shù)函數(shù)與它的階的評(píng)論 (共 條)

分享到微博請(qǐng)遵守國(guó)家法律
桐庐县| 宣武区| 黄陵县| 东城区| 包头市| 廉江市| 蒙城县| 龙州县| 通化市| 陆川县| 济南市| 稻城县| 乌鲁木齐市| 汶川县| 昂仁县| 沙田区| 梨树县| 延边| 农安县| 宁强县| 尉犁县| 合阳县| 吴堡县| 正镶白旗| 交口县| 双桥区| 阳东县| 桃园县| 洛浦县| 天水市| 永寿县| 郁南县| 枣庄市| 玉树县| 嘉荫县| 灵台县| 仪陇县| 庐江县| 蕉岭县| 和平县| 苗栗市|