【文獻速遞】【NBT】【2022年】【2-6月】

聲明:本專欄主要對生命科學(xué)領(lǐng)域的一些期刊文章標(biāo)題進行翻譯,所有內(nèi)容均由本人手工整理翻譯。由于本人專業(yè)為生物分析相關(guān),其他領(lǐng)域如果出現(xiàn)翻譯錯誤請諒解。


緊湊型 Cas13
Rendering of the predicted structure of an RNA editor based on the compact Cas13bt enzyme presented by Kannan et al. Cas13bt is small enough to be delivered using adeno-associated viruses, even when additional functional domains, such as deaminases, are fused to the enzyme.
基于Kannan等人提出的緊湊型Cas13bt酶呈現(xiàn)RNA編輯器的預(yù)測結(jié)構(gòu)。Cas13bt足夠小,可以使用腺相關(guān)病毒進行遞送,即使額外的功能域(例如脫氨酶)與該酶融合。
1.Identification of tumor antigens with immunopeptidomics.
用免疫肽學(xué)鑒定腫瘤抗原。
2.CRISPR prime editing with ribonucleoprotein complexes in zebrafish and primary human cells.
斑馬魚和原代人細胞中的核糖核蛋白復(fù)合物的CRISPR Prime編輯。
3.Compact RNA editors with small Cas13 proteins.
帶有小CAS13蛋白的緊湊型RNA編輯器。
4.Wireless closed-loop optogenetics across the entire dorsoventral spinal cord in mice.
小鼠整個背腹脊髓的無線閉環(huán)光遺傳學(xué)。
5.Unannotated proteins expand the MHC-I-restricted immunopeptidome in cancer.
未注釋的蛋白質(zhì)在癌癥中擴展了MHC-I限制的免疫肽組。
6.Precise genomic deletions using paired prime editing.
使用配對的主要編輯精確的基因組缺失。
7.Deletion and replacement of long genomic sequences using prime editing.
使用主要編輯刪除和替換長基因組序列。
8.Chromatin Velocity reveals epigenetic dynamics by single-cell profiling of heterochromatin and euchromatin.
染色質(zhì)速度通過異染色質(zhì)和常染色質(zhì)的單細胞分析揭示表觀遺傳動力學(xué)。
9.Differential abundance testing on single-cell data using k-nearest neighbor graphs.
使用K-Nearest鄰居圖對單細胞數(shù)據(jù)進行差異豐度測試。
10.Multiscale and integrative single-cell Hi-C analysis with Higashi.
使用Higashi的多尺度和綜合單細胞HI-C分析。
11.A small and highly sensitive red/far-red optogenetic switch for applications in mammals.
用于哺乳動物應(yīng)用的小型且高度敏感的紅外/遠紅外光遺傳學(xué)開關(guān)。

具有合成生物學(xué)的可持續(xù)化學(xué)品
A synthetic biology process converts the one-carbon molecules CO and CO2 from steel-mill waste gases into the useful three-carbon molecules acetone and isopropanol. The method, demonstrated by Liew et al. at pilot industrial scale, provides a carbon-negative route for manufacturing the two compounds.
合成生物學(xué)過程將鋼廠廢氣中的單碳分子CO和CO2轉(zhuǎn)化為有用的三碳分子丙酮和異丙醇。Liew等人演示了該方法。在試點工業(yè)規(guī)模上,為制造這兩種化合物提供了一條碳負路線。
1.Spatial components of molecular tissue biology.
分子組織生物學(xué)的空間成分。
2.Pre-activated antiviral innate immunity in the upper airways controls early SARS-CoV-2 infection in children.
上呼吸道的預(yù)激活的抗病毒先天免疫控制兒童的早期SARS-CoV-2感染。
3.Direct targeting of amplified gene loci for proapoptotic anticancer therapy.
直接靶向放大基因位點進行促凋亡抗癌治療。
4.Carbon-negative production of acetone and isopropanol by gas fermentation at industrial pilot scale.
工業(yè)中試規(guī)模氣體發(fā)酵法負碳生產(chǎn)丙酮和異丙醇。
5.Cell segmentation in imaging-based spatial transcriptomics.
基于成像的空間轉(zhuǎn)錄組學(xué)中的細胞分割。
6.Co-varying neighborhood analysis identifies cell populations associated with phenotypes of interest from single-cell transcriptomics.
共同的鄰域分析確定了與單細胞轉(zhuǎn)錄組學(xué)感興趣的表型相關(guān)的細胞群體。
7.Highly-multiplexed volumetric mapping with Raman dye imaging and tissue clearing.
用拉曼染料成像和組織清除進行高度多形的體積映射。
8.Single-cell profiling of proteins and chromatin accessibility using PHAGE-ATAC.
使用Phage-ATAC的蛋白質(zhì)和染色質(zhì)可及性的單細胞分析。
9.High-throughput functional characterization of protein phosphorylation sites in yeast.
酵母中蛋白質(zhì)磷酸化位點的高通量功能表征。
10.Functional single-cell genomics of human cytomegalovirus infection.
人類巨細胞病毒感染的功能性單細胞基因組學(xué)。
11.Engineered pegRNAs improve prime editing efficiency.
工程化pegRNAs提高了主要編輯效率。
12.High-confidence structural annotation of metabolites absent from spectral libraries.
光譜文庫中沒有代謝物的高置信度結(jié)構(gòu)注釋。
13.Population genomic analysis of Aegilops tauschii identifies targets for bread wheat improvement.
節(jié)節(jié)山羊草的種群基因組分析確定了改善面包小麥的靶標(biāo)。

Artist’s impression of a phylogenetic tree. Konno et al. present a highly efficient distributed computing method for the reconstruction of evolutionary trees from very large datasets.
藝術(shù)家對系統(tǒng)發(fā)育樹的印象。Konno等人提出了一種高效的分布式計算方法,用于從非常大的數(shù)據(jù)集重建進化樹。
1.Super-resolved spatial transcriptomics by deep data fusion.
通過深度數(shù)據(jù)融合構(gòu)建超分辨的空間轉(zhuǎn)錄組學(xué)。
2.Remote smartphone monitoring of Parkinson’s disease and individual response to therapy.
遠程智能手機監(jiān)測帕金森氏病和個人對治療的反應(yīng)。
3.T cells targeted to TdT kill leukemic lymphoblasts while sparing normal lymphocytes.
靶向TdT的T細胞殺死白血病淋巴母細胞,同時保留正常淋巴細胞。
4.Improved prediction of immune checkpoint blockade efficacy across multiple cancer types.
改善了多種癌癥類型的免疫檢查點阻斷功效的預(yù)測。
5.Fast and accurate metagenotyping of the human gut microbiome with GT-Pro.
用GT-Pro對人腸道微生物組的快速準(zhǔn)確的宏基因分型。
6.Robust decomposition of cell type mixtures in spatial transcriptomics.
強大分解空間轉(zhuǎn)錄組學(xué)中細胞類型混合物。
7.Identifying phenotype-associated subpopulations by integrating bulk and single-cell sequencing data.
通過整合大量和單細胞測序數(shù)據(jù)來識別與表型相關(guān)的亞群。
8.RNA-responsive elements for eukaryotic translational control.
用于真核翻譯控制的RNA響應(yīng)元素。
9.Locus-specific expression of transposable elements in single cells with CELLO-seq.
使用CELLO-seq在單細胞中轉(zhuǎn)座因子的位點特異性表達。
10.Whole-cell segmentation of tissue images with human-level performance using large-scale data annotation and deep learning.
使用大規(guī)模數(shù)據(jù)注釋和深度學(xué)習(xí)對具有人類性能的組織圖像進行全細胞分割。
11.Deep distributed computing to reconstruct extremely large lineage trees.
深層分布式計算以重建極大的譜系樹。
12.Personalized phosphoproteomics identifies functional signaling.
個性化的磷蛋白組學(xué)鑒定功能信號傳導(dǎo)。
13.Inferring gene expression from cell-free DNA fragmentation profiles.
從無細胞DNA片段化輪廓中推斷基因表達。
14.Genetically encoded photo-switchable molecular sensors for optoacoustic and super-resolution imaging.
用于光聲和超分辨率成像的基因編碼光開關(guān)分子傳感器。
15.Sparse deconvolution improves the resolution of live-cell super-resolution fluorescence microscopy.
稀疏的反卷積改善了活細胞超分辨率熒光顯微鏡的分辨率。

Kuchroo et al. use data geometry and topology to develop Multiscale PHATE, a visualization tool for single-cell data. When applied to immune cells of COVID-19 patients, it helps find cell subgroups predictive of mortality.
Kuchroo 等人使用數(shù)據(jù)幾何和拓撲開發(fā)多尺度PHATE,一種用于單細胞數(shù)據(jù)的可視化工具。 當(dāng)應(yīng)用于COVID-19患者的免疫細胞時,它有助于找到預(yù)測死亡率的細胞亞群。
1.Sensitive identification of neoantigens and cognate TCRs in human solid tumors.
對人類實體瘤中新抗原和同源TCR的靈敏鑒定。
2.Cell2location maps fine-grained cell types in spatial transcriptomics.
Cell2Location在空間轉(zhuǎn)錄組學(xué)中映射細粒度細胞類型。
3.Curated variation benchmarks for challenging medically relevant autosomal genes.
用于挑戰(zhàn)醫(yī)學(xué)相關(guān)常染色體基因的精選變異基準(zhǔn)。
4.Multiscale PHATE identifies multimodal signatures of COVID-19.
多尺度PHATE標(biāo)識了COVID-19的多模式特征。
5.A knowledge graph to interpret clinical proteomics data.
解釋臨床蛋白質(zhì)組學(xué)數(shù)據(jù)的知識圖。
6.scJoint integrates atlas-scale single-cell RNA-seq and ATAC-seq data with transfer learning.
scJoint通過轉(zhuǎn)移學(xué)習(xí)整合了地圖尺度的單細胞RNA-seq和ATAC-Seq數(shù)據(jù)。
7.Generating lineage-resolved, complete metagenome-assembled genomes from complex microbial communities.
從復(fù)雜的微生物群落產(chǎn)生譜系分辨、完整的元基因組組裝基因組。
8.Fluctuating methylation clocks for cell lineage tracing at high temporal resolution in human tissues.
在人體組織中高時空分辨率下進行細胞譜系追蹤的波動甲基化時鐘。
9.Programmable deletion, replacement, integration and inversion of large DNA sequences with twin prime editing.
有Twin Prime編輯的可編程刪除、替換、集成和反轉(zhuǎn)大型DNA序列。
10.Partitioning RNAs by length improves transcriptome reconstruction from short-read RNA-seq data.
按長度分配RNAs可改善從短讀RNA-seq數(shù)據(jù)中的轉(zhuǎn)錄組重建。
11.Engineering the amoeba Dictyostelium discoideum for biosynthesis of a cannabinoid precursor and other polyketides.
改造變形蟲盤基網(wǎng)柄菌以生物合成大麻素前體和其他聚酮化合物。
12.CLUSTER guide RNAs enable precise and efficient RNA editing with endogenous ADAR enzymes in vivo.
CLUSTER指導(dǎo)RNAs可以使用體內(nèi)內(nèi)源性ADAR酶進行精確有效的RNA編輯。
13.Conformation-locking antibodies for the discovery and characterization of KRAS inhibitors.
用于發(fā)現(xiàn)和表征KRAS抑制劑的構(gòu)型鎖定抗體。
14.Optogenetic control of RNA function and metabolism using engineered light-switchable RNA-binding proteins.
使用工程化光可切換RNA結(jié)合蛋白對RNA功能和代謝的光遺傳控制。
15.A fluorescent sensor for spatiotemporally resolved imaging of endocannabinoid dynamics in vivo.
用于體內(nèi)內(nèi)源性大麻素動力學(xué)的空間分辨成像的熒光傳感器。

An illustration of spirulina powder, which can be engineered to produce therapeutic proteins for human consumption. The method, developed by Jester et al., overcomes limitations in current genetic tools to generate stable spirulina lines expressing high levels of bioactive proteins at large scale.
螺旋藻粉的插圖,它可以被設(shè)計用來生產(chǎn)供人類食用的治療性蛋白質(zhì)。 該方法由Jester等人開發(fā),克服了當(dāng)前遺傳工具的局限性,可生成穩(wěn)定的螺旋藻系,大規(guī)模表達高水平的生物活性蛋白。
1.The clinical progress of mRNA vaccines and immunotherapies.
mRNA疫苗和免疫療法的臨床進展。
2.Cell types of origin of the cell-free transcriptome.
無細胞轉(zhuǎn)錄組起源的細胞類型。
3.Base editing sensor libraries for high-throughput engineering and functional analysis of cancer-associated single nucleotide variants.
用于癌癥相關(guān)單核苷酸變異的高通量工程和功能分析的堿基編輯傳感器庫。
4.High-throughput functional evaluation of human cancer-associated mutations using base editors.
使用堿基編輯器對人類癌癥相關(guān)突變進行高通量功能評估。
5.Saturation variant interpretation using CRISPR prime editing.
使用CRISPR Prime編輯的飽和變量解釋。
6.Massively parallel phenotyping of coding variants in cancer with Perturb-seq.
使用Perturb-seq進行癌癥編碼變異的大規(guī)模平行表型分析。
7.A humanized mouse model of chronic COVID-19.
慢性COVID-19的人源化小鼠模型。
8.Identification of antimicrobial peptides from the human gut microbiome using deep learning.
使用深度學(xué)習(xí)從人腸道微生物組中鑒定抗菌肽。
9.Using deep learning to annotate the protein universe.
使用深度學(xué)習(xí)來注釋蛋白質(zhì)宇宙。
10.Efficient in vitro and in vivo RNA editing via recruitment of endogenous ADARs using circular guide RNAs.
通過使用圓形向?qū)NAs募集內(nèi)源性ADAR,可以在體外和體內(nèi)進行效率的RNA編輯。
11.Engineered circular ADAR-recruiting RNAs increase the efficiency and fidelity of RNA editing in vitro and in vivo.
工程化的環(huán)狀A(yù)DAR募集RNA提高了體外和體內(nèi)RNA編輯的效率和保真度。
12.Development of spirulina for the manufacture and oral delivery of protein therapeutics.
開發(fā)用于制造和口服遞送蛋白質(zhì)療法的螺旋藻。
13.Imaging of innate immunity activation in vivo with a redox-tuned PET reporter.
使用氧化還原調(diào)諧PET報告器對體內(nèi)先天免疫激活進行成像。