甜食和蛋白質(zhì)是衰老萬惡之源?甘氨酸實(shí)力打臉,好甜的它也好抗衰
抗衰藥物和補(bǔ)劑不斷更迭,長江后浪推前浪,在對飲食限制的研究中發(fā)現(xiàn),蛋白質(zhì)限制以及幾種氨基酸的限制都會給抗衰帶來積極影響,但是其中卻有一個(gè)另類——甘氨酸。
去年,貝勒醫(yī)學(xué)院的一項(xiàng)人體臨床試驗(yàn)顯示,甘氨酸和N乙酰半胱氨酸(NAC)聯(lián)用可以將8旬老人的衰老情況改善到21歲年輕人水平[1]!甘氨酸也因此備受關(guān)注,迅速在抗衰圈子里“爆紅”。
甘氨酸是什么?為什么同為氨基酸,它卻能抗衰延壽?就讓派派帶你一起,看看甘氨酸的發(fā)展歷程,瀏覽其傳奇“藥”生。(文末含甘氨酸補(bǔ)劑攝入劑量建議)
甘氨酸作為最簡單的氨基酸,是蛋白質(zhì)的基本小分子之一。1820年,H. Braconnot研究明膠的水解時(shí)分離出了甘氨酸,因?yàn)?strong>它有蔗糖80%的甜度,當(dāng)時(shí)他認(rèn)為這是一種糖,后來才發(fā)現(xiàn),這個(gè)“明膠糖”中含有氮原子,好像是一種氨基酸[2]。
圖注:甘氨酸分子式
到后來人們認(rèn)識到了蛋白質(zhì)的重要性,雖然甘氨酸不是必需氨基酸(人體可以合成),但是甘氨酸是人體蛋白質(zhì)中總氨基酸氮的20%來源[2],因此,甘氨酸也是蛋白補(bǔ)充劑中的“常駐選手”。
最初,人們將甘氨酸添加在家禽等的飼料中,用于提升家禽的狀態(tài),增加它們的體重[3],后來則發(fā)展為人類直接服用[4]。
在逐漸探索中,人類找到了甘氨酸的第一項(xiàng)藥理功能:治療亮氨酸代謝缺陷產(chǎn)生的異戊酸血癥。異戊酸血癥通常發(fā)生在嬰幼兒時(shí)期,嚴(yán)重時(shí)會引起酮癥酸中毒,甚至危及生命,而甘氨酸剛好能中和異戊酸,緩解患兒中毒癥狀[5]。
圖注:甘氨酸能中和異戊酸,緩解異戊酸血癥
就這樣,作為蛋白補(bǔ)充劑和異戊酸血癥藥物,甘氨酸低調(diào)地完成了前期藥物發(fā)展。
甘氨酸的相關(guān)研究的緩慢進(jìn)展,人們漸漸發(fā)現(xiàn),甘氨酸似乎還能防治肝臟手術(shù)后的缺血再灌注損傷[6]、改善因孕期蛋白限制造成的后代高血壓[7]、對酒精引起的肝損傷具有保護(hù)作用[8]、緩解嚴(yán)重兒童營養(yǎng)不良[9]、增強(qiáng)創(chuàng)傷后傷口愈合[10]等功能。
圖注:甘氨酸可以作為抗氧化物質(zhì)谷胱甘肽的前體物質(zhì)
量變產(chǎn)生質(zhì)變,甘氨酸默默積累了多年的藥用功效,再加上它能作為谷胱甘肽的前體物質(zhì)參與到衰老中,最終,甘氨酸在2014年正式入選美國抗衰干預(yù)物質(zhì)篩選計(jì)劃ITP——專門為抗衰藥和抗衰補(bǔ)劑打造的“星計(jì)劃”。
練習(xí)時(shí)長兩年半,啊不,5年后,2019年甘氨酸脫胎換骨順利“出道”。以4%-6%的延壽數(shù)據(jù)正式進(jìn)入“ITP認(rèn)證抗衰藥”行列,從此躋身熱門抗衰藥圈子[11]。在獲得了足夠的重視后,甘氨酸迅速被發(fā)掘了大量抗衰功效和潛力。
圖注:甘氨酸對小鼠的延壽效果
在小鼠中:
補(bǔ)充甘氨酸不僅能延長它們的壽命,還能增強(qiáng)T細(xì)胞的激活以及線粒體生物合成[12],并通過抑制促炎細(xì)胞因子發(fā)揮抗炎特性[13];以及促進(jìn)代謝健康,減少腹部脂肪的積累、血漿甘油三酯水平和高蔗糖飲食引起的高血壓[14]。
在人類中:
甘氨酸補(bǔ)充劑已被證明可以預(yù)防由II型糖尿病引起的慢性炎癥、氧化應(yīng)激,提高免疫力[15],降低糖尿病風(fēng)險(xiǎn)[16];緩解與年齡相關(guān)的線粒體缺陷[17];促進(jìn)肌肉祖細(xì)胞增殖[18];提高甘氨酸血液水平還能降低心血管疾病的風(fēng)險(xiǎn)降低[19]。
甘氨酸在得到抗衰界認(rèn)可之后的發(fā)展也并非一帆風(fēng)順,有和其他藥物聯(lián)用達(dá)到抗衰功效巔峰,也有研究勸誡為了健康少攝入甘氨酸。
No.1
直上云霄
首先是甘氨酸“藥生”中的重大轉(zhuǎn)折——甘氨酸和另一款抗氧化劑藥物NAC聯(lián)用:GlyNAC,只能延壽4-6%的甘氨酸遇到了自己的“完美搭檔”N乙酰半胱氨酸(NAC),并攜手走上了神壇。
2021年,美國貝勒醫(yī)學(xué)院宣布了他們的一項(xiàng)人體臨床初期實(shí)驗(yàn)結(jié)果,直接讓甘氨酸超越了其他很多老牌抗衰藥的研究進(jìn)程。
他們的實(shí)驗(yàn)結(jié)果表示,通過36周的干預(yù),同時(shí)補(bǔ)充甘氨酸(Glycine)和NAC能夠全面改善老年受試者的衰老狀況,干預(yù)后部分衰老指標(biāo)直逼青少年的水平,包括IL-10、空腹血糖水平、正常步行速度等,且沒有表現(xiàn)出任何毒副作用[1]。
圖注:該項(xiàng)臨床試驗(yàn)部分結(jié)果
雖然這項(xiàng)臨床試驗(yàn)處于初期階段,并只有16個(gè)受試者(包含8個(gè)對照年輕人),但是這項(xiàng)研究還是瞬間點(diǎn)爆了甘氨酸研究領(lǐng)域和銷售市場。短短兩年內(nèi),甘氨酸抗衰相關(guān)研究的發(fā)表論文數(shù)多達(dá)146篇,甘氨酸補(bǔ)劑銷售量也蒸蒸日上。
No.2
面臨挑戰(zhàn)
雖然甘氨酸已經(jīng)被證明擁有各種各樣的抗衰功效,在各個(gè)臨床試驗(yàn)中也表現(xiàn)出了高度的安全性,但是研究者們?nèi)匀怀洲q證的態(tài)度看待它。
在2022年11月發(fā)表在nature子刊上的一篇研究中,通過對不同類型飲食及其受眾的健康狀況的調(diào)查發(fā)現(xiàn),甘氨酸攝入量和肥胖患病率呈正相關(guān)!也就是說,甘氨酸攝入水平高的人肥胖率也高,肥胖相關(guān)的疾病困擾也更多[20]。
當(dāng)然,這篇“逆向而行”的文章也明示了它的局限之處:選用的飲食類型大多是西方飲食,不適合全體人類,更重要的是,只展示了觀察性的結(jié)果,并沒有解釋原因,因此,也不排除是富含甘氨酸的食物中的其他成分造成的肥胖率上升。
圖注:不同種氨基酸的攝入與肥胖等疾病的關(guān)聯(lián)
雖然紅極一時(shí),但是甘氨酸究竟能否安全服用,能否強(qiáng)效抗衰,還需要未來更多的研究探索和證明。
討論了這么多甘氨酸的抗衰延壽效果,那甘氨酸究竟該怎么補(bǔ)充呢?
作為一種非必需氨基酸,甘氨酸其實(shí)可以在人體內(nèi)由膽堿、絲氨酸、羥脯氨酸和蘇氨酸合成[2],但是在常見的生活條件下,甘氨酸因?yàn)槠浜铣赏緩叫瘦^低(合成過程中生成了大量的其他物質(zhì))而普遍合成不足[21],因此,也就需要外源甘氨酸補(bǔ)充來填補(bǔ)機(jī)體對甘氨酸的需求。
No.1
食物補(bǔ)充
甘氨酸主要存在于富含蛋白質(zhì)的食物中,例如肉類、魚類、乳制品、奶酪和蔬菜等[22]。但是這些富含蛋白質(zhì)的食物一方面容易產(chǎn)生引起蛋白質(zhì)攝入過量,另一方面卻無法滿足人體對甘氨酸的需求,每天只能補(bǔ)充1.5-3.0g的甘氨酸,遠(yuǎn)遠(yuǎn)達(dá)不到人體需求[23],因此,甘氨酸藥物補(bǔ)劑也很重要。
圖注:補(bǔ)充甘氨酸的食物
No.2
補(bǔ)劑補(bǔ)充
考慮到甘氨酸過量可能引發(fā)的副作用(如在豬身上表現(xiàn)為增加顱內(nèi)壓、造成心肌損傷等)[24],派派整理了近幾年各個(gè)臨床試驗(yàn)和實(shí)驗(yàn)研究中甘氨酸的人類補(bǔ)充劑量,為大家提供參考。
如果按照一個(gè)人70kg來算,那么這些文獻(xiàn)中采用/推薦的甘氨酸每日攝入量從0.105g-17.5g不等,均沒有表現(xiàn)出不良反應(yīng)[1,5,9,23,25-27]。
其中唯一一篇推薦劑量為10g/天[23],而“80歲逆轉(zhuǎn)至21歲”的臨床試驗(yàn)中采用量則約為6.99g/天[1],因此,派派覺得,每天吃5-10g甘氨酸對于一個(gè)正常體重成年人來說,應(yīng)該是合適,有效,且安全的(僅供參考)。
看完甘氨酸的傳奇抗衰生涯,是不是已經(jīng)打開某橙色軟件躍躍欲試了?又好吃(甜)又抗衰,誰能不愛呢?
目前市面上的甘氨酸補(bǔ)劑產(chǎn)品的每日推薦服用量一般在1-6g之間,想要通過甘氨酸補(bǔ)劑抗衰的友友們最好還是根據(jù)自己的實(shí)際情況,科學(xué)挑選,量力而行。
—— TIMEPIE ——
這里是只做最硬核續(xù)命學(xué)研究的時(shí)光派,專注“長壽科技”科普。日以繼夜翻閱文獻(xiàn)撰稿只為給你帶來最新、最全前沿抗衰資訊,歡迎評論區(qū)留下你的觀點(diǎn)和疑惑;日更動力源自你的關(guān)注與分享,抗衰路上與你并肩同行!
參考文獻(xiàn)
[1] Kumar, P., Osahon, O. W., & Sekhar, R. V. (2022). GlyNAC (Glycine and N-Acetylcysteine) Supplementation in Mice Increases Length of Life by Correcting Glutathione Deficiency, Oxidative Stress, Mitochondrial Dysfunction, Abnormalities in Mitophagy and Nutrient Sensing, and Genomic Damage. Nutrients, 14(5), 1114. https://doi.org/10.3390/nu14051114
[2] Razak, M. A., Begum, P. S., Viswanath, B., & Rajagopal, S. (2017). Multifarious Beneficial Effect of Nonessential Amino Acid, Glycine: A Review. Oxidative medicine and cellular longevity, 2017, 1716701. https://doi.org/10.1155/2017/1716701
[3] Ngo, A., & Coon, C. (1976). The effect of feeding various levels of dietary glycine in a pre-experimental diet to one-day old chicks on their subsequent glycine plus serine requirement. Poultry science, 55(5), 1672–1677. https://doi.org/10.3382/ps.0551672
[4] Lynch, G. S., & Koopman, R. (2018). Dietary meat and protection against sarcopenia. Meat science, 144, 180–185. https://doi.org/10.1016/j.meatsci.2018.06.023
[5] Yudkoff, M., Cohn, R. M., Puschak, R., Rothman, R., & Segal, S. (1978). Glycine therapy in isovaleric acidemia. The Journal of pediatrics, 92(5), 813–817. https://doi.org/10.1016/s0022-3476(78)80164-4
[6] Hoffmann, K., Büchler, M. W., & Schemmer, P. (2011). Supplementation of amino acids to prevent reperfusion injury after liver surgery and transplantation--where do we stand today?. Clinical nutrition (Edinburgh, Scotland), 30(2), 143–147. https://doi.org/10.1016/j.clnu.2010.09.006
[7] Jackson, A. A., Dunn, R. L., Marchand, M. C., & Langley-Evans, S. C. (2002). Increased systolic blood pressure in rats induced by a maternal low-protein diet is reversed by dietary supplementation with glycine. Clinical science (London, England : 1979), 103(6), 633–639. https://doi.org/10.1042/cs1030633
[8] Senthilkumar, R., & Nalini, N. (2004). The potential beneficial effect of glycine on the carbohydrate moieties of glycoproteins in an experimental model of alcohol-induced hepatotoxicity. Journal of medicinal food, 7(1), 108–113. https://doi.org/10.1089/109662004322984798
[9] Persaud, C., Forrester, T., & Jackson, A. A. (1996). Urinary excretion of 5-L-oxoproline (pyroglutamic acid) is increased during recovery from severe childhood malnutrition and responds to supplemental glycine. The Journal of nutrition, 126(11), 2823–2830. https://doi.org/10.1093/jn/126.11.2823
[10] Chyun, J. H., & Griminger, P. (1984). Improvement of nitrogen retention by arginine and glycine supplementation and its relation to collagen synthesis in traumatized mature and aged rats. The Journal of nutrition, 114(9), 1697–1704. https://doi.org/10.1093/jn/114.9.1697
[11] Miller, R. A., Harrison, D. E., Astle, C. M., Bogue, M. A., Brind, J., Fernandez, E., Flurkey, K., Javors, M., Ladiges, W., Leeuwenburgh, C., Macchiarini, F., Nelson, J., Ryazanov, A. G., Snyder, J., Stearns, T. M., Vaughan, D. E., & Strong, R. (2019). Glycine supplementation extends lifespan of male and female mice. Aging cell, 18(3), e12953. https://doi.org/10.1111/acel.12953
[12] Ron-Harel, N., Notarangelo, G., Ghergurovich, J. M., Paulo, J. A., Sage, P. T., Santos, D., Satterstrom, F. K., Gygi, S. P., Rabinowitz, J. D., Sharpe, A. H., & Haigis, M. C. (2018). Defective respiration and one-carbon metabolism contribute to impaired na?ve T cell activation in aged mice. Proceedings of the National Academy of Sciences of the United States of America, 115(52), 13347–13352. https://doi.org/10.1073/pnas.1804149115
[13] Alarcon-Aguilar, F. J., Almanza-Perez, J., Blancas, G., Angeles, S., Garcia-Macedo, R., Roman, R., & Cruz, M. (2008). Glycine regulates the production of pro-inflammatory cytokines in lean and monosodium glutamate-obese mice. European journal of pharmacology, 599(1-3), 152–158. https://doi.org/10.1016/j.ejphar.2008.09.047
[14] El Hafidi, M., Pérez, I., Zamora, J., Soto, V., Carvajal-Sandoval, G., & Ba?os, G. (2004). Glycine intake decreases plasma free fatty acids, adipose cell size, and blood pressure in sucrose-fed rats. American journal of physiology. Regulatory, integrative and comparative physiology, 287(6), R1387–R1393. https://doi.org/10.1152/ajpregu.00159.2004
[15] Cruz, M., Maldonado-Bernal, C., Mondragón-Gonzalez, R., Sanchez-Barrera, R., Wacher, N. H., Carvajal-Sandoval, G., & Kumate, J. (2008). Glycine treatment decreases proinflammatory cytokines and increases interferon-gamma in patients with type 2 diabetes. Journal of endocrinological investigation, 31(8), 694–699. https://doi.org/10.1007/BF03346417
[16] Guasch-Ferré, M., Hruby, A., Toledo, E., Clish, C. B., Martínez-González, M. A., Salas-Salvadó, J., & Hu, F. B. (2016). Metabolomics in Prediabetes and Diabetes: A Systematic Review and Meta-analysis. Diabetes care, 39(5), 833–846. https://doi.org/10.2337/dc15-2251
[17] Hashizume, O., Ohnishi, S., Mito, T., Shimizu, A., Ishikawa, K., Nakada, K., Soda, M., Mano, H., Togayachi, S., Miyoshi, H., Okita, K., & Hayashi, J. (2015). Epigenetic regulation of the nuclear-coded GCAT and SHMT2 genes confers human age-associated mitochondrial respiration defects. Scientific reports, 5, 10434. https://doi.org/10.1038/srep10434
[18] Gheller, B. J., Blum, J. E., Lim, E. W., Handzlik, M. K., Hannah Fong, E. H., Ko, A. C., Khanna, S., Gheller, M. E., Bender, E. L., Alexander, M. S., Stover, P. J., Field, M. S., Cosgrove, B. D., Metallo, C. M., & Thalacker-Mercer, A. E. (2021). Extracellular serine and glycine are required for mouse and human skeletal muscle stem and progenitor cell function. Molecular metabolism, 43, 101106. https://doi.org/10.1016/j.molmet.2020.101106
[19] Hartiala, J. A., Tang, W. H., Wang, Z., Crow, A. L., Stewart, A. F., Roberts, R., McPherson, R., Erdmann, J., Willenborg, C., Hazen, S. L., & Allayee, H. (2016). Genome-wide association study and targeted metabolomics identifies sex-specific association of CPS1 with coronary artery disease. Nature communications, 7, 10558. https://doi.org/10.1038/ncomms10558
[20] Dai, Z., Zheng, W., & Locasale, J. W. (2022). Amino acid variability, tradeoffs and optimality in human diet. Nature communications, 13(1), 6683. https://doi.org/10.1038/s41467-022-34486-0
[21] de Paz-Lugo, P., Lupiá?ez, J. A., & Meléndez-Hevia, E. (2018). High glycine concentration increases collagen synthesis by articular chondrocytes in vitro: acute glycine deficiency could be an important cause of osteoarthritis. Amino acids, 50(10), 1357–1365. https://doi.org/10.1007/s00726-018-2611-x
[22] Parazzini F. (2015). Resveratrol, tryptophanum, glycine and vitamin E: a nutraceutical approach to sleep disturbance and irritability in peri- and post-menopause. Minerva ginecologica, 67(1), 1–5.
[23] Meléndez-Hevia, E., De Paz-Lugo, P., Cornish-Bowden, A., & Cárdenas, M. L. (2009). A weak link in metabolism: the metabolic capacity for glycine biosynthesis does not satisfy the need for collagen synthesis. Journal of biosciences, 34(6), 853–872. https://doi.org/10.1007/s12038-009-0100-9
[24] Sandfeldt, L., Riddez, L., Rajs, J., Ewaldsson, C., Piros, D., & Hahn, R. G. (2001). High-dose intravenous infusion of irrigating fluids containing glycine and mannitol in the pig. The Journal of surgical research, 95(2), 114–125. https://doi.org/10.1006/jsre.2000.6028
[25] Sekhar, R. V., Patel, S. G., Guthikonda, A. P., Reid, M., Balasubramanyam, A., Taffet, G. E., & Jahoor, F. (2011). Deficient synthesis of glutathione underlies oxidative stress in aging and can be corrected by dietary cysteine and glycine supplementation. The American journal of clinical nutrition, 94(3), 847–853. https://doi.org/10.3945/ajcn.110.003483
[26] Lizzo, G., Migliavacca, E., Lamers, D., Frézal, A., Corthesy, J., Vinyes-Parès, G., Bosco, N., Karagounis, L. G., H?velmann, U., Heise, T., von Eynatten, M., & Gut, P. (2022). A Randomized Controlled Clinical Trial in Healthy Older Adults to Determine Efficacy of Glycine and N-Acetylcysteine Supplementation on Glutathione Redox Status and Oxidative Damage. Frontiers in aging, 3, 852569. https://doi.org/10.3389/fragi.2022.852569
[27] Marchini, J. S., Lambertini, C. R., Ferriolli, E., & Dutra de Oliveira, J. E. (2001). Obese women on a low energy rice and bean diet: effects of leucine, arginine or glycine supplementation on protein turnover. Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas, 34(10), 1277–1283. https://doi.org/10.1590/s0100-879x2001001000007