最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網(wǎng) 會員登陸 & 注冊

【文獻速遞】【Natcatal】【2022年】【7-12月】

2023-02-25 21:42 作者:Rt_Cola  | 我要投稿

聲明:本專欄主要對生命科學(xué)領(lǐng)域的一些期刊文章標題進行翻譯,所有內(nèi)容均由本人手工整理翻譯。由于本人專業(yè)為生物分析相關(guān),其他領(lǐng)域如果出現(xiàn)翻譯錯誤請諒解。

Tracking intermediates

追蹤中間體

Gaining complete understanding of complex reaction networks is pivotal for process optimization, yet it is a very challenging endeavour. Here, Javier Pérez-Ramírez, Patrick Hemberger, Guido Zichittella and colleagues employ operando photoelectron photoion coincidence spectroscopy to monitor the mechanistic intricacies of the methanol and methyl chloride conversions to hydrocarbons on zeolite catalysts.

全面了解復(fù)雜的反應(yīng)網(wǎng)絡(luò)是過程優(yōu)化的關(guān)鍵,但這是一項非常具有挑戰(zhàn)性的工作。在這里,Javier Pérez-Ramírez、Patrick Hemberger、Guido Zichittella及其同事使用原位光電子光離子符合光譜來監(jiān)測甲醇和氯甲烷在沸石催化劑上轉(zhuǎn)化為碳氫化合物的復(fù)雜機理。

1.Photoinduced chemomimetic biocatalysis for enantioselective intermolecular radical conjugate addition.

光誘導(dǎo)的化學(xué)象征性生物催化,用于對映選擇性分子間自由基共軛加成。

2.Oxygenate-based routes regulate syngas conversion over oxide–zeolite bifunctional catalysts.

基于含氧化合物的路線通過氧化物-沸石雙功能催化劑調(diào)節(jié)合成氣轉(zhuǎn)化率。

3.Elucidation of radical- and oxygenate-driven paths in zeolite-catalysed conversion of methanol and methyl chloride to hydrocarbons.

在沸石催化下甲醇和氯甲烷轉(zhuǎn)化為碳氫化合物,闡明了自由基和氧化驅(qū)動的路徑。

4.A kinetic descriptor for the electrolyte effect on the oxygen reduction kinetics on Pt(111).

電解質(zhì)對Pt(111)氧還原動力學(xué)影響的動力學(xué)描述符。

5.Correlating hydration free energy and specific adsorption of alkali metal cations during CO2 electroreduction on Au.

將CO2電還原過程中堿金屬陽離子的水合自由能與特定吸附相關(guān)聯(lián)。

6.Bacteria–photocatalyst sheet for sustainable carbon dioxide utilization.

可持續(xù)二氧化碳利用的細菌-光催化片。

7.Site-selective amination towards tertiary aliphatic allylamines.

對叔脂肪族烯丙胺的位點選擇性胺化。

Like a protease

像蛋白酶

Chiral copper sulfide nanoparticles functionalized with D-penicillamine can cleave the capsid of tobacco mosaic virus in a site-selective fashion under sunlight irradiation. This composite catalyst functions like a protease and can inhibit viral infections in protoplasts and plants with negligible adverse effects.

用D-青霉胺功能化的手性硫化銅納米顆粒可以在陽光照射下以位點選擇性方式切割煙草花葉病毒的衣殼。這種復(fù)合催化劑的功能類似于蛋白酶,可以抑制原生質(zhì)體和植物中的病毒感染,而副作用可以忽略不計。

1.Deep learning-based kcat prediction enables improved enzyme-constrained model reconstruction.

基于深度學(xué)習(xí)的KCAT預(yù)測可以改善酶約束的模型重建。

2.Directed evolution of an efficient and thermostable PET depolymerase.

有效和熱穩(wěn)定的PET解聚酶的定向演化。

3.LimF is a versatile prenyltransferase for histidine-C-geranylation on diverse non-natural substrates.

LimF是一種多功能異戊二烯基轉(zhuǎn)移酶,用于在多種非天然底物上進行組氨酸-C-香葉基化。

4.Site-selective proteolytic cleavage of plant viruses by photoactive chiral nanoparticles.

通過光活性手性納米顆粒對植物病毒的位點選擇性蛋白水解裂解。

5.Nickel-catalysed asymmetric heteroarylative cyclotelomerization of isoprene.

異戊二烯的鎳催化不對稱的雜芳基環(huán)化調(diào)聚。

6.Linear paired electrochemical valorization of glycerol enabled by the electro-Fenton process using a stable NiSe2 cathode.

使用穩(wěn)定的NiSe2陰極的電芬頓過程可實現(xiàn)甘油的線性配對電化學(xué)增值。

7.Metabolic engineering of Escherichia coli with electron channelling for the production of natural products.

用于生產(chǎn)天然產(chǎn)物的電子通道大腸桿菌代謝工程。

8.Enhancing acetate selectivity by coupling anodic oxidation to carbon monoxide electroreduction.

通過將陽極氧化與碳一氧化碳電還原來提高乙酸選擇性。

Tunnel engineering in biocatalysis

生物催化中的隧道工程

Ni–Fe carbon monoxide dehydrogenases (CODHs) can oxidize CO at a high rate, but their O2 sensitivity is a major drawback for potential industrial application. Here, Hyung Ho Lee, Yong Hwan Kim and colleagues engineer the selectivity of a gas channel in a CODH for efficient removal of CO from industrial flue gas in the presence of O2.

Ni-Fe一氧化碳脫氫酶(CODH)可以高速氧化CO,但它們對O2的敏感性是潛在工業(yè)應(yīng)用的主要缺點。在這里,Hyung Ho Lee、Yong Hwan Kim及其同事設(shè)計了CODH中氣體通道的選擇性,以便在存在O2的情況下從工業(yè)煙氣中有效去除CO。

1.Rational design of perovskite ferrites as high-performance proton-conducting fuel cell cathodes.

鈣鈦礦鐵氧體作為高性能質(zhì)子導(dǎo)電燃料電池陰極的合理設(shè)計。

2.Construction of axial chirality via asymmetric radical trapping by cobalt under visible light.

通過可見光下鈷的不對稱自由基捕獲來構(gòu)建軸向手性。

3.Regulation of the electrocatalytic nitrogen cycle based on sequential proton–electron transfer.

基于順序質(zhì)子-電子轉(zhuǎn)移對電催化氮循環(huán)的調(diào)節(jié)。

4.O2-tolerant CO dehydrogenase via tunnel redesign for the removal of CO from industrial flue gas.

通過隧道重新設(shè)計的耐O2 CO脫氫酶,用于從工業(yè)煙道氣中去除CO。

5.The role of Cu1–O3 species in single-atom Cu/ZrO2 catalyst for CO2 hydrogenation.

Cu1–O3物種在單原子Cu/ZrO2催化劑中對CO2加氫的作用。

6.Visible-light photocatalytic di- and hydro-carboxylation of unactivated alkenes with CO2.

未活化烯烴與CO2的可見光光催化二羧化和加氫羧化。

進入雙層

Unveiling the critical role of the interfacial electric double layer in electrocatalytic kinetics is of high interest, yet it remains challenging. Herein, by combining ab initio molecular dynamics simulations, in situ surface-enhanced infrared absorption spectroscopy and computational spectroscopy, Shengli Chen and colleagues demonstrate that significant differences in connectivity within the hydrogen-bond networks in the electric double layer are the cause of the pH effect on the kinetics of hydrogen electrocatalysis.

揭示界面雙電層在電催化動力學(xué)中的關(guān)鍵作用引起了人們的極大興趣,但它仍然具有挑戰(zhàn)性。在此,通過結(jié)合從頭算分子動力學(xué)模擬、原位表面增強紅外吸收光譜和計算光譜,Shengli Chen及其同事證明,雙電層中氫鍵網(wǎng)絡(luò)內(nèi)部連通性的顯著差異是pH值對氫電催化動力學(xué)影響的原因。

1.Enzyme-like water preorganization in a synthetic molecular cleft for homogeneous water oxidation catalysis.

用于均相水氧化催化的合成分子裂縫中的類酶水預(yù)組織。

2.Exploration of the bio-analogous asymmetric C–C coupling mechanism in tandem CO2 electroreduction.

探索串聯(lián)CO2電還原中的生物類比不對稱C-C偶聯(lián)機制。

3.On the origin of multihole oxygen evolution in haematite photoanodes.

關(guān)于赤鐵礦光電陽極中多孔析氧的起源。

4.Hydrogen bond network connectivity in the electric double layer dominates the kinetic pH effect in hydrogen electrocatalysis on Pt.

雙電層中的氫鍵網(wǎng)絡(luò)連通性決定了Pt氫電催化中的動力學(xué)pH效應(yīng)。

5.Principles of target DNA cleavage and the role of Mg2+ in the catalysis of CRISPR–Cas9.

目標DNA切割原理和Mg2+在CRISPR–Cas9催化中的作用。

6.The role of alkali metal cations and platinum-surface hydroxyl in the alkaline hydrogen evolution reaction.

堿金屬陽離子和鉑表面羥基在堿性氫進化反應(yīng)中的作用。

7.Synthesis of tri- and tetrasubstituted stereocentres by nickel-catalysed enantioselective olefin cross-couplings.

通過鎳催化的對映選擇性烯烴交叉偶聯(lián)合成三取代和四取代的立體中心。

8.Photoelectrochemical asymmetric catalysis enables site- and enantioselective cyanation of benzylic C–H bonds.

光電化學(xué)不對稱催化能夠?qū)崿F(xiàn)苯并C–H鍵的位點和對映選擇性氰化。

9.Bypassing evolutionary dead ends and switching the rate-limiting step of a human immunotherapeutic enzyme.

繞過進化末端并切換人類免疫治療酶的速率限制步驟。

Thin photo-factories

薄片工廠

In their work, Wenbin Lin and colleagues introduce a family of tunable artificial enzymes equipping metal–organic framework monolayers with an amino acid-coordinated metal centre and photoactive cofactors. Different analogues of such photoactive catalysts can thus be integrated into an efficient artificial photosynthesis system.

在他們的工作中,Wenbin Lin及其同事介紹了一系列可調(diào)諧人工酶,這些酶為金屬有機框架單分子層配備了氨基酸配位的金屬中心和光活性輔助因子。因此,可以將此類光活性催化劑的不同類似物整合到有效的人工光合作用系統(tǒng)中。

1.On the role of metal cations in CO2 electrocatalytic reduction.

關(guān)于金屬陽離子在二氧化碳電催化還原中的作用。

2.Reply to: On the role of metal cations in CO2 electrocatalytic reduction.

回復(fù):關(guān)于金屬陽離子在二氧化碳電催化還原中的作用。

3.Synthesis of chiral piperidines from pyridinium salts via rhodium-catalysed transfer hydrogenation.

通過銠催化轉(zhuǎn)移氫化從吡啶鹽合成手性哌啶。

4.Nickel–molybdenum–niobium metallic glass for efficient hydrogen oxidation in hydroxide exchange membrane fuel cells.

用于氫氧化物交換膜燃料電池中高效氫氧化的鎳-鉬-鈮金屬玻璃。

5.Biomimetic active sites on monolayered metal–organic frameworks for artificial photosynthesis.

人工光合作用的單層金屬和有機框架上的仿生活性位點。

6.Maximizing light-driven CO2 and N2 fixation efficiency in quantum dot–bacteria hybrids.

最大化光驅(qū)動的CO2和N2在量子點-細菌雜交體中的固定效率。

7.Enhanced CO2 utilization in dry reforming of methane achieved through nickel-mediated hydrogen spillover in zeolite crystals.

通過沸石晶體中鎳介導(dǎo)的氫溢出實現(xiàn)甲烷干重整中CO2利用率的提高。

8.Highly selective hydrogenation of CO2 to propane over GaZrOx/H-SSZ-13 composite.

在GaZrOx/H-SSZ-13復(fù)合材料上將CO2高選擇性氫化為丙烷。

9.Breaking structure sensitivity in CO2 hydrogenation by tuning metal–oxide interfaces in supported cobalt nanoparticles.

通過調(diào)整負載型鈷納米顆粒中的金屬氧化物界面來打破CO2加氫過程中的結(jié)構(gòu)敏感性。

10.Catalytic asymmetric α C(sp3)–H addition of benzylamines to aldehydes.

苯甲胺與醛的催化不對稱α C(sp3)–H加成反應(yīng)。

Catalysis at the interface

界面催化

The electrochemical hydrogenation of organic substrates using water as the hydrogen source is a desirable strategy but encompasses a series of challenges, such as low solubility, side reactions or product separation. Here, Alexis Bordet, Nicolas Kaeffer and colleagues put forward a Pickering emulsion system in which the organic substrates and aqueous electrolytes are in different phases and the reaction occurs at the interface, achieving high Faradaic efficiency and avoiding solubility or separation issues.

使用水作為氫源對有機底物進行電化學(xué)氫化是一種理想的策略,但包含一系列挑戰(zhàn),例如低溶解度、副反應(yīng)或產(chǎn)物分離。在這里,Alexis Bordet、Nicolas Kaeffer及其同事提出了一種Pickering乳液體系,其中有機底物和含水電解質(zhì)處于不同的相中,反應(yīng)發(fā)生在界面,實現(xiàn)了高法拉第效率并避免了溶解度或分離問題。

1.Copper/alkaline earth metal oxide interfaces for electrochemical CO2-to-alcohol conversion by selective hydrogenation.

用于通過選擇性氫化將CO2電化學(xué)轉(zhuǎn)化為酒精的銅/堿土金屬氧化物界面。

2.Structurally defined anti-π-allyliridium complexes catalyse Z-retentive asymmetric allylic alkylation of oxindoles.

結(jié)構(gòu)定義的抗π-烯丙基銥絡(luò)合物催化羥吲哚的Z-保留不對稱烯丙基烷基化。

3.Photoinduced gold-catalyzed divergent dechloroalkylation of gem-dichloroalkanes.

光誘導(dǎo)的金催化的偕二氯烷烴的發(fā)散脫氯烷基化。

4.Electrocatalytic hydrogenation of alkenes with Pd/carbon nanotubes at an oil–water interface.

在油水界面上,用鈀/碳納米管對烷烴進行電催化氫化。

5.Energy transfer-enabled unsymmetrical diamination using bifunctional nitrogen-radical precursors.

使用雙功能氮自由基前體實現(xiàn)能量轉(zhuǎn)移的不對稱二聚反應(yīng)。

6.The functional coupling between restriction and DNA phosphorothioate modification systems underlying the DndFGH restriction complex.

DndFGH限制性復(fù)合物的限制性和DNA硫代磷酸酯修飾系統(tǒng)之間的功能耦合。

7.Peripheral-nitrogen effects on the Ru1 centre for highly efficient propane dehydrogenation.

外圍氮對Ru1中心的高效丙烷脫氫作用。

8.Mild and metal-free Birch-type hydrogenation of (hetero)arenes with boron carbonitride in water.

在水中用碳氮化硼對(雜)芳烴進行溫和且無金屬的Birch型氫化。

9.Operando proton-transfer-reaction time-of-flight mass spectrometry of carbon dioxide reduction electrocatalysis.

二氧化碳還原電催化的原位質(zhì)子轉(zhuǎn)移反應(yīng)飛行時間質(zhì)譜法。

10.Enantio- and diastereoselective construction of vicinal C(sp3) centres via nickel-catalysed hydroalkylation of alkenes.

通過烯烴的鎳催化加氫烷基化反應(yīng)構(gòu)建鄰位C(sp3)中心的對映和非對映選擇性結(jié)構(gòu)。

【文獻速遞】【Natcatal】【2022年】【7-12月】的評論 (共 條)

分享到微博請遵守國家法律
铜陵市| 泰兴市| 湘阴县| 介休市| 尉氏县| 盐池县| 曲周县| 台州市| 长垣县| 乌什县| 和静县| 保康县| 潍坊市| 曲阜市| 广水市| 宣恩县| 闽清县| 桐庐县| 锡林浩特市| 金秀| 达日县| 涿鹿县| 城市| 冕宁县| 乐安县| 齐齐哈尔市| 宁乡县| 凤台县| 从江县| 万安县| 广平县| 河池市| 桐庐县| 栖霞市| 肃宁县| 东安县| 紫阳县| 拉萨市| 石狮市| 静宁县| 海伦市|