最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網 會員登陸 & 注冊

記號

2022-01-08 10:15 作者:子瞻Louis  | 我要投稿

忽然意識到今后我的文章可能會用到一些記號,有些還是不同于其他地方的規(guī)定,為了以后的方便,本期就給它們整合在一起吧,

文集:《Analysis》《雜文集》

EPD系列:《EPD》

一般情況a%2Cb%2Cm%2Cn%2Ck%2Cq%2Cl%2Cr%2C%E2%80%A6%0A表示整數,t%2Cx%2Cy%2C%5Calpha%2C%5Cbeta%2C%5Cxi%2C%E2%80%A6表示實數,s%2Cz%2C%E2%80%A6表示復數,c%2Cc_0%2Cc_1%2C%E2%80%A6表示正的常數,%5Cvarepsilon%2C%5Cvarepsilon_1%2C%5Cvarepsilon_2%2C%E2%80%A6表示非常小的正數,p%2Cp_1%2Cp_2%2C%E2%80%A6表示素數

所有整數的集合記為%5Cmathbb%20Z,自然數集%5Cmathbb%20N,實數集%5Cmathbb%20R,復數集%5Cmathbb%20C,所有素數的集合%5Cmathbb%20P,

當用s表示復數時,通過s%3D%5Csigma%2Bit%5CRightarrow%20%5CRe%20(s)%3D%5Csigma%2C%5CIm(s)%3Dt來規(guī)定它的實部與虛部,%5Clog%20s%3D%5Cln%20s表示s的對數取主值

%5Cmax(x_1%2Cx_2%2C%E2%80%A6%2Cx_k)%2C%5Cmin(x_1%2Cx_2%2C%E2%80%A6%2Cx_k)分別表示k個數中最大與最小的那個

通常情況下%5Bx%5D表示不大于x的最大整數,即整數部分,%5C%7Bx%5C%7D%3Dx-%5Bx%5Dx的小數部分,%7C%7Cx%7C%7C%3D%5Cmin%20(%5C%7Bx%5C%7D%2C1-%5C%7Bx%5C%7D%5C%20)x到最近整數的距離

a%5Cmid%20b表示b整除a,a%5Cnmid%20b則表示b不整除a,p%5El%20%5Cparallel%20n表示p%5Cmid%20np%5E%7Bl%2B1%7D%5Cnmid%20n

a%5Cequiv%20b%5Cmod%20n表示同余,

以?%5Cbar%20G?表示復平面上區(qū)域?G?的閉包,%5Cpartial%20G?表示它的邊界,?H(G)?表示在?G?中解析的函數集合,%5Cbar%7B%20%5Cmathbb%20C%7D%3A%3D%5Cmathbb%20C%5Ccup%5C%7B%5Cinfty%5C%7D?為擴充復平面,對復平面上的無界域?G?,記其擴展邊界為?%5Cpartial_%7B%5Cinfty%7DG%3A%3D%5Cpartial%20G%5Ccup%5C%7B%5Cinfty%5C%7D?,而若?G?有界則?%5Cpartial_%7B%5Cinfty%7DG%3A%3D%5Cpartial%20G?.

大O符號(Big O notation)定義為:

g(x)%3D%5Cmathcal%20O(f(x))%5Ciff%20g(x)%5Cll%20f(x)%5Ciff%20%20%7Cg(x)%7C%5Cle%20cf(x)

其中c可以是依賴于某些參數的常數,這是個比較抽象的定義,實際它就是一個用來描述誤差的符號,會用在許多估計中,可以理解為不超過f(x)的誤差,有時也稱它為

大θ符號(Big?theta?notation):

g(x)%3D%5CTheta(f(x))%5Ciff%20c_1f(x)%5Cle%20g(x)%5Cle%20c_2f(x)

是比大O更精確的估計

小o符號

g(x)%3Do(f(x))%5Ciff%20%5Clim_%7Bx%5Cto%5Cinfty%7D%5Cfrac%7Bf(x)%7D%7Bg(x)%7D%3D0

數論

%5Comega(n)%2C%5COmega(n)分別表示n的不同素因子個數與全部素因子個數,即不計算與計算重數后的素因子個數

恒等函數%5Cmathrm%7Bid%7D(n)%3Dn%2C1(n)%3D1

Mobius函數

%5Cmu(n)%3D%5Cleft%5C%7B%20%5Cbegin%7Barray%7D%7Brcl%7D%0A0%20%26%20%5Comega(n)%E2%89%A0%5COmega(n)%5C%5C%20(-1)%5Er%20%26%20%5Comega(n)%3D%5COmega(n)%3Dr%20%5Cend%7Barray%7D%5Cright.

f(n)%2Cg(n)為一數論函數,則

f*%20g(n)%3D%5Csum_%7Bd%5Cmid%20n%7Df(d)g%5Cleft(%5Cfrac%20nd%5Cright)%3D%5Csum_%7Bn%3Dab%7Df(a)g(b)

為f與g的Dirichlet卷積,取g(n)%5Cequiv1,則為Mobius變換%5Ctilde%20f(n)

%5Ctilde%20f(n)%3D%5Csum_%7Bd%5Cmid%20n%7Df(d)%5CRightarrow%20f(n)%3D%5Csum_%7Bd%5Cmid%20n%7D%5Cmu(d)%5Ctilde%20f%5Cleft(%5Cfrac%20nd%5Cright)

示性函數

%5Cvarepsilon(n)%3D1%5Ccirc%5Cmu(n)%3D%5Cleft%5C%7B%20%5Cbegin%7Barray%7D%7Brcl%7D%0A1%20%26%20n%3D1%5C%5C%200%20%26%20n%EF%BC%9E1%20%5Cend%7Barray%7D%5Cright.

Euler函數%5Cphi(n)表示與n互素且不超過n的整數個數,

%5Cphi(n)%3Dn%5Cprod_%7Bp%5Cmid%20n%7D%5Cleft(1-%5Cfrac1p%5Cright)

除數函數d(n)表示n的除數個數,

d(n)%3D%5Csum_%7Bd%5Cmid%20n%7D1

von Mongoldt函數

%5CLambda%20(n)%3D%5Cleft%5C%7B%20%5Cbegin%7Barray%7D%7Brcl%7D%0A%5Clog%20p%20%26%20%5Comega(n)%3D1%2Cn%3Dp%5Em%20%5C%5C%200%20%26%20%5Comega(n)%EF%BC%9E1%20%5Cend%7Barray%7D%5Cright.

Tchebychev psi、theta函數

%5Cpsi(x)%3D%5Csum_%7Bn%5Cle%20x%7D%5CLambda(n)%2C%5Cvartheta(x)%3D%5Csum_%7Bp%5Cle%20x%7D%5Clog%20p

廣義反演

f*%20g(n)%3D%5Cvarepsilon(n),則

G(x)%3D%5Csum_%7Bn%5Cle%20x%7Df(n)F%5Cleft(%5Cfrac%20xn%5Cright)%5CRightarrow%20F(x)%3D%5Csum_%7Bn%5Cle%20x%7Dg(n)G%5Cleft(%5Cfrac%20xn%5Cright)

G(s%2Cm)%3D%5Csum_%7Bn%3D1%7D%5E%5Cinfty%20f(n)%5Cfrac%7BF(s%2Cmn)%7Dn%5CRightarrow%20F(s%2Cm)%3D%5Csum_%7Bn%3D1%7D%5E%5Cinfty%20g(n)%5Cfrac%7BG(s%2Cmn)%7Dn

對數積分函數

%5Cmathrm%7BLi%7D(x)%3D%5Cint_0%5Ex%5Cfrac%7B%5Cmathrm%20dt%7D%7B%5Cln%20t%7D%3D%5Cint_2%5Ex%5Cfrac%7B%5Cmathrm%20dt%7D%7B%5Cln%20t%7D%2B%5Clim_%7B%5Cvarepsilon%5Cto0%7D%5Cint_0%5E%7B1-%5Cvarepsilon%7D%5Cfrac%7B%5Cmathrm%20dt%7D%7B%5Cln%20t%7D%2B%5Cint_%7B1%2B%5Cvarepsilon%7D%5E2%5Cfrac%7B%5Cmathrm%20dt%7D%7B%5Cln%20t%7D

%5Cmathrm%7Bli%7D(x)%3D%5Cint_2%5Ex%5Cfrac%7B%5Cmathrm%20dt%7D%7B%5Cln%20t%7D

常義Dirichlet級數

f(n)為數論函數,

%5Cmathcal%20D(s%3Bf)%3D%5Csum_%7Bn%3D1%7D%5E%5Cinfty%20f(n)n%5E%7B-s%7D

廣義Dirichlet級數

%5Clambda(n)%2Cf(n)為數論函數

%5Cmathcal%20D(s%3B%5Clambda%2Cf)%3D%5Csum_%7Bn%3D1%7D%5E%5Cinfty%20f(n)e%5E%7B-%5Clambda(n)s%7D

分析

單位階躍函數

u(t)%3D%5Cleft%5C%7B%20%5Cbegin%7Barray%7D%7Brcl%7D%0A1%20%26%20t%EF%BC%9E0%5C%5C%20%5Cfrac12%20%26%20t%3D0%5C%5C%200%20%26%20t%EF%BC%9C0%20%5Cend%7Barray%7D%5Cright.

Dirac delta函數

%5Cdelta(t)%3D%5Cleft%5C%7B%20%5Cbegin%7Barray%7D%7Brcl%7D%0A1%20%26%20t%3D0%5C%5C%200%20%26%20t%E2%89%A00%20%5Cend%7Barray%7D%5Cright.

常義卷積

f*g(x)%3D%5Cint_%7B-%5Cinfty%7D%5E%5Cinfty%20f(t)g(x-t)%5Cmathrm%20dt

Fourier變換

%5Cmathcal%20F%5C%7Bf%5C%7D(%5Cxi)%3D%5Chat%20f(%5Cxi)%3D%5Cint_%7B-%5Cinfty%7D%5E%5Cinfty%20f(t)e%5E%7B-i%5Cxi%20t%7D%5Cmathrm%20dt

%5Cmathcal%20F%5E%7B-1%7D%5C%7B%5Chat%20f%5C%7D(t)%3Df(t)%3D%5Cint_%7B-%5Cinfty%7D%5E%5Cinfty%20%5Chat%20f(%5Cxi)e%5E%7Bi%5Cxi%20t%7D%5Cmathrm%20d%5Cxi

Laplace變換

%5Cmathcal%20L%5C%7Bf%5C%7D(s)%3DF(s)%3D%5Cint_0%5E%7B%5Cinfty%7Df(t)e%5E%7B-st%7D%5Cmathrm%20dt

%5Cmathcal%20L%5E%7B-1%7D%5C%7BF%5C%7D(t)%3Df(t)%3D%5Cfrac1%7B2%5Cpi%20i%7D%5Cint_%7B%5Csigma-i%5Cinfty%7D%5E%7B%5Csigma%2Bi%5Cinfty%7DF(s)e%5E%7Bst%7D%5Cmathrm%20ds

Mellin變換

%5Cmathcal%20M%5C%7Bg%5C%7D(s)%3DG(s)%3D%5Cint_0%5E%5Cinfty%20g(x)x%5E%7Bs-1%7D%5Cmathrm%20dx

%5Cmathcal%20M%5E%7B-1%7D%5C%7BG%5C%7D(t)%3Dg(t)%3D%5Cfrac1%7B2%5Cpi%20i%7D%5Cint_%7B%5Csigma-i%5Cinfty%7D%5E%7B%5Csigma%2Bi%5Cinfty%7D%20G(s)x%5E%7B-s%7D%5Cmathrm%20ds

Euler常數

%5Cgamma%3D%5Clim_%7By%5Cto%5Cinfty%7D%5Csum_%7Bn%5Cle%20y%7D%5Cfrac1n-%5Cln%20y

Mertens常數

%5Cmu%3D%5Clim_%7Bx%5Cto%5Cinfty%7D%5Csum_%7Bp%5Cle%20x%7D%5Cfrac1p-%5Cln%5Cln%20x

Euler-de Moivre公式

e%5E%7Bix%7D%3D%5Ccos%20x%2Bi%5Csin%20x

有時記

e(x)%3De%5E%7B2%5Cpi%20ix%7D%EF%BC%8Ce_q(x)%3De%5E%7B2%5Cpi%20ix%2Fq%7D

先寫這么多吧,以后再補充

記號的評論 (共 條)

分享到微博請遵守國家法律
新余市| 柳江县| 萨迦县| 双辽市| 崇信县| 红安县| 桃源县| 绍兴市| 金阳县| 巴林左旗| 华池县| 大丰市| 江安县| 定襄县| 澳门| 井研县| 门源| 白玉县| 进贤县| 涿鹿县| 吴堡县| 信丰县| 本溪| 太湖县| 府谷县| 德化县| 祥云县| 常州市| 天祝| 图片| 永泰县| 绿春县| 伊金霍洛旗| 南京市| 马尔康县| 久治县| 盈江县| 灵石县| 芜湖市| 大连市| 南康市|