最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網(wǎng) 會員登陸 & 注冊

[Calculus] Euler-Mascheroni Constant

2021-11-02 21:20 作者:AoiSTZ23  | 我要投稿

By: Tao Steven Zheng (鄭濤)

【Problem】

Part 1: Differentiate the gamma function

%5CGamma(n)%20%3D%20%5Cint%20_%7B%200%20%7D%5E%7B%20%5Cinfty%20%20%7D%7B%20%7B%20t%20%7D%5E%7B%20n-1%20%7D%7B%20e%20%7D%5E%7B%20-t%20%7D%20%7D%20dt

Part 2: The Euler-Mascheroni constant is defined

%20%5Clim_%7Bn%5Crightarrow%20%5Cinfty%7D%7B%5Cleft%5B%7B%20H%20%7D_%7B%20n%2B1%20%7D%20-%5Cln%7B(n)%7D%5Cright%5D%7D%20%3D%20%5Cgamma

Use the result in part 1 to show that %7B%5CGamma%7D%5E%7B'%7D%20(1)%20%3D%20-%5Cgamma.


【Solution】

Part 1
We begin with the integral definition of the Gamma function

%5Clim%20_%7B%20x%5Crightarrow%20%5Cinfty%20%20%7D%7B%20%5Cint%20_%7B%200%20%7D%5E%7B%20x%20%7D%7B%20%7B%20e%20%7D%5E%7B%20-t%20%7D%7B%20t%20%7D%5E%7B%20n-1%20%7D%20%7D%20dt%20%7D%20

To differentiate under the integral, use the Leibniz Rule.

%5Cfrac%7Bd%7D%7Bdx%7D%5Cint_%7Ba(x)%7D%5E%7Bb(x)%7D%20f(x%2Ct)dt%20%3D%20%5Cint_%7Ba(x)%7D%5E%7Bb(x)%7D%5Cfrac%7B%5Cpartial%7D%7B%5Cpartial%20x%7D%20f(x%2Ct)%20dt%20%2B%20f%5Cbig(x%2Cb(x)%5Cbig)%5Ccdot%20b'(x)%20-%20f%5Cbig(x%2Ca(x)%5Cbig)%5Ccdot%20a'(x)

For this problem, replace x%20 with %20n%20.


%5Cfrac%7B%5Cpartial%20f%7D%7B%5Cpartial%20n%7D%20%3D%20%7Bt%7D%5E%7Bn-1%7D%7Be%7D%5E%7B-t%7D%20%5Cln%7B(t)%7D

Thus,

%5Cbegin%7Balign%7D%0A%5CGamma%20'(n%2Ct)%20%26%3D%20%5Clim%20_%7B%20x%5Crightarrow%20%5Cinfty%20%20%7D%7B%20%5Cleft%5B%5Cint%20_%7B%200%20%7D%5E%7B%20x%20%20%7D%7B%7Bt%7D%5E%7Bn-1%7D%5Cln(t)%7Be%7D%5E%7B-t%7D%7D%20dt%20%2B%20%5Cleft(%7B%20x%20%7D%5E%7B%20n-1%20%7D%7B%20e%20%7D%5E%7B-x%7D%5Cright)%20%5Ccdot%201%20-%200%20%5Ccdot%200%20%5Cright%5D%20%7D%20%20%5C%5C%0A%26%3D%20%5Clim%20_%7B%20x%5Crightarrow%20%5Cinfty%20%20%7D%7B%20%5Cleft%5B%5Cint%20_%7B%200%20%7D%5E%7B%20x%20%20%7D%7B%7Bt%7D%5E%7Bn-1%7D%5Cln(t)%7Be%7D%5E%7B-t%7D%7D%20dt%20%2B%20%7B%20x%20%7D%5E%7B%20n-1%20%7D%7B%20e%20%7D%5E%7B-x%7D%5Cright%5D%20%7D%20%5C%5C%0A%26%3D%20%5Cint%20_%7B%200%20%7D%5E%7B%20%5Cinfty%20%7D%7B%20%7B%20e%20%7D%5E%7B%20-t%20%7D%7B%20t%20%7D%5E%7B%20n-1%20%7D%20%5Cln%5Cleft(t%5Cright)%7D%20dt%20%5C%5C%0A%5Cend%7Balign%7D

Part 2
To evaluate %7B%5CGamma%7D%5E%7B'%7D%20(1), we set n%3D1; thus,

%5Cint%20_%7B%200%20%7D%5E%7B%20%5Cinfty%20%7D%7B%20%7B%20e%20%7D%5E%7B%20-t%20%7D%5Cln%5Cleft(t%5Cright)%7D%20dt%20

We replace %20%7Be%7D%5E%7B-t%7D with %5Clim%20_%7B%20n%5Crightarrow%20%5Cinfty%20%20%7D%7B%20%5Cleft(1-%5Cfrac%7Bt%7D%7Bn%7D%20%5Cright)%5E%7Bn%7D%20%7D.

Let s%20%3D%201%20-%20%5Cfrac%7Bt%7D%7Bn%7D%20 and -nds%20%3D%20dt%20, we get

%20%5Cbegin%7Balign%7D%0A%5Clim%20_%7B%20n%5Crightarrow%20%5Cinfty%20%20%7D%7B%20%5Cleft%5B%20%5Cint%20_%7B%201%7D%5E%7B%200%7D%7B%20%7B%20s%20%7D%5E%7B%20n%20%7D%20%7D%20%5Cleft%5B%5Cln(n)%2B%5Cln(1-s)%20%5Cright%5D%20(-n)ds%20%5Cright%5D%20%20%7D%20%20%5C%5C%0A%20%26%3D%20%5Clim%20_%7B%20n%5Crightarrow%20%5Cinfty%20%20%7D%7B%20%5Cleft%5B%20n%5Cln%7B(n)%7D%5Cint%20_%7B%200%20%7D%5E%7B%201%20%7D%7B%20%7B%20s%20%7D%5E%7B%20n%20%7D%20%7D%20ds%2B%5Cint%20_%7B%200%20%7D%5E%7B%201%20%7D%7B%20%7B%20s%20%7D%5E%7B%20n%20%7D%20%7D%20%5Cln(1-s)ds%20%5Cright%5D%20%20%7D%20%20%5C%5C%0A%20%26%3D%5Clim%20_%7B%20n%5Crightarrow%20%5Cinfty%20%20%7D%7B%20%5Cleft%5B%20%5Cfrac%20%7B%20n%20%7D%7B%20n%2B1%20%7D%20%5Cln%7B(n)%7D%20%2B%5Cfrac%20%7B%20-1%20%7D%7B%20n%2B1%20%7D%20%5Cint%20_%7B%200%20%7D%5E%7B%201%20%7D%7B%20%5Cfrac%20%7B%20%7B%20s%20%7D%5E%7B%20n%2B1%20%7D-1%20%7D%7B%20s-1%20%7D%20%20%7D%20ds%20%5Cright%5D%20%20%7D%20%20%20%5C%5C%0A%20%26%3D%5Clim%20_%7B%20n%5Crightarrow%20%5Cinfty%20%20%7D%7B%5Cfrac%20%7B%20n%20%7D%7B%20n%2B1%20%7D%20%5Cleft%5B%5Cln%7B(n)%7D-%7B%20H%20%7D_%7B%20n%2B1%20%7D%20%5Cright%5D%7D%20%5C%5C%0A%5Cend%7Balign%7D%20


Since the Euler-Mascheroni constant is defined %5Clim_%7Bn%5Crightarrow%20%5Cinfty%7D%7B%5Cleft%5B%7B%20H%20%7D_%7B%20n%2B1%20%7D%20-%5Cln%7B(n)%7D%20%5Cright%5D%7D%20,

%20%7B%5CGamma%7D%5E%7B'%7D%20(1)%20%3D%20-%5Cgamma%20

The numerical value of the Euler-Mascheroni constant is roughly 0.577216.


[Calculus] Euler-Mascheroni Constant的評論 (共 條)

分享到微博請遵守國家法律
昌平区| 玛曲县| 双城市| 定结县| 密山市| 天等县| 景宁| 金华市| 赞皇县| 册亨县| 莱西市| 霍林郭勒市| 衡山县| 郧西县| 顺义区| 宁晋县| 钟山县| 绍兴市| 塔城市| 新兴县| 佛教| 呼伦贝尔市| 岑巩县| 雷山县| 诏安县| 中超| 乌海市| 广州市| 当雄县| 洛南县| 江川县| 汉阴县| 华宁县| 宝山区| 九江县| 阳西县| 静安区| 翼城县| 铅山县| 驻马店市| 西城区|