最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網(wǎng) 會員登陸 & 注冊

對數(shù)函數(shù)連續(xù)性的證明

2022-06-11 17:54 作者:奧博格沙特  | 我要投稿

求證:f(x)%3D%5Clog_a%20x%20?(a%3E0a%5Cneq%201)(0%2C%2B%E2%88%9E)連續(xù).


本證明將直接用函數(shù)連續(xù)的定義證明,而不用“可導(dǎo)必連續(xù)”證明.(事實上,如用“可導(dǎo)必連續(xù)”證明,則還需證明對數(shù)函數(shù)可導(dǎo),最終還將歸結(jié)為函數(shù)極限的問題.)

注:%5Cforall%20%5Cdelta%20%3E0?表示“任意”;%5Cexists%20 表示“存在”;s.t.?表示“使得”


證明:即證%5Clim_%7Bx%5Cto%20x_%7B0%7D%20%7D%20%5Clog_a%20x%20%3D%5Clog_a%20x_%7B0%7D,其中x_%7B0%7D%3E0

即證%5Cforall%20%5Cvarepsilon%20%3E0%2C%20%5Cexists%20%5Cdelta%3E0??s.t.? %5Cforall%200%3C%5Cvert%20x-x_%7B0%7D%20%5Cvert%20%3C%5Cdelta,都有%5Cvert%20%5Clog_a%20x-%5Clog_a%20x_%7B0%7D%20%20%5Cvert%20%3C%5Cvarepsilon%20


a%3E1

當(dāng)x%3Ex_%7B0%7D時,

此時%5Cvert%20%5Clog_a%20x-%5Clog_a%20x_%7B0%7D%20%5Cvert%20%3C%20%5Cvarepsilon%20%5Ciff%20%5Clog_a%20%5Cfrac%7Bx%7D%7Bx_%7B0%7D%7D%20%3C%5Cvarepsilon%20%5Ciff%20%5Cfrac%7Bx%7D%7Bx_%7B0%7D%7D%3Ca%5E%5Cvarepsilon?

%5Cvert%20x-x_%7B0%7D%20%5Cvert%20%3C%20%5Cdelta%20%5Cimplies%20x%20%3C%20x_%7B0%7D%2B%5Cdelta%20%5Cimplies%20%5Cfrac%7Bx%7D%7Bx_%7B0%7D%7D%3C%5Cfrac%7Bx_%7B0%7D%2B%5Cdelta%7D%7Bx_%7B0%7D%7D

故可取%5Cdelta??s.t.??%5Cfrac%7Bx_%7B0%7D%2B%5Cdelta%7D%7Bx_%7B0%7D%7D%3Da%5E%5Cvarepsilon%20%5Ciff%20%5Cdelta%3Dx_%7B0%7D(a%5E%5Cvarepsilon-1)%20%3E0

即有%5Cvert%20%5Clog_a%20x-%5Clog_a%20x_%7B0%7D%20%20%5Cvert%20%3C%5Cvarepsilon%20


當(dāng)0%3Cx%3Cx_%7B0%7D時,

此時%5Cvert%20%5Clog_a%20x-%5Clog_a%20x_%7B0%7D%20%5Cvert%20%3C%20%5Cvarepsilon%20%5Ciff%20%5Clog_a%20%5Cfrac%7Bx_%7B0%7D%7D%7Bx%7D%20%3C%5Cvarepsilon%20%5Ciff%20%5Cfrac%7Bx_%7B0%7D%7D%7Bx%7D%3Ca%5E%5Cvarepsilon?

%5Cvert%20x-x_%7B0%7D%20%5Cvert%20%3C%20%5Cdelta%20%5Cimplies%20x%20%3E%20x_%7B0%7D-%5Cdelta%20%5Cimplies%20%5Cfrac%7Bx_%7B0%7D%7D%7Bx%7D%3C%5Cfrac%7Bx_%7B0%7D%7D%7Bx_%7B0%7D-%5Cdelta%7D

故可取%5Cdelta??s.t.??%5Cfrac%7Bx_%7B0%7D%7D%7Bx_%7B0%7D-%5Cdelta%7D%3Da%5E%5Cvarepsilon%20%5Ciff%20%5Cdelta%3Dx_%7B0%7D(-a%5E%7B-%5Cvarepsilon%7D%20%2B1)%20%3E0

即有%5Cvert%20%5Clog_a%20x-%5Clog_a%20x_%7B0%7D%20%20%5Cvert%20%3C%5Cvarepsilon%20


0%3Ca%3C1

當(dāng)x%3Ex_%7B0%7D時,

此時%5Cvert%20%5Clog_a%20x-%5Clog_a%20x_%7B0%7D%20%5Cvert%20%3C%20%5Cvarepsilon%20%5Ciff%20%5Clog_a%20%5Cfrac%7Bx_0%7D%7Bx%7D%20%3C%5Cvarepsilon%20%5Ciff%20%5Cfrac%7Bx_0%7D%7Bx%7D%3Ea%5E%5Cvarepsilon?

%5Cvert%20x-x_%7B0%7D%20%5Cvert%20%3C%20%5Cdelta%20%5Cimplies%20x%20%3C%20x_%7B0%7D%2B%5Cdelta%20%5Cimplies%20%5Cfrac%7Bx_0%7D%7Bx%7D%3E%5Cfrac%7Bx_%7B0%7D%7D%7Bx_%7B0%7D%2B%5Cdelta%7D

故可取%5Cdelta??s.t.??%5Cfrac%7Bx_%7B0%7D%7D%7Bx_%7B0%7D%2B%5Cdelta%7D%3Da%5E%5Cvarepsilon%20%5Ciff%20%5Cdelta%3Dx_%7B0%7D(a%5E%7B-%5Cvarepsilon%7D-1)%20%3E0

即有%5Cvert%20%5Clog_a%20x-%5Clog_a%20x_%7B0%7D%20%20%5Cvert%20%3C%5Cvarepsilon%20


當(dāng)0%3Cx%3Cx_%7B0%7D時,

此時%5Cvert%20%5Clog_a%20x-%5Clog_a%20x_%7B0%7D%20%5Cvert%20%3C%20%5Cvarepsilon%20%5Ciff%20%5Clog_a%20%5Cfrac%7Bx%7D%7Bx_0%7D%20%3C%5Cvarepsilon%20%5Ciff%20%5Cfrac%7Bx%7D%7Bx_0%7D%3Ea%5E%5Cvarepsilon?

%5Cvert%20x-x_%7B0%7D%20%5Cvert%20%3C%20%5Cdelta%20%5Cimplies%20x%20%3E%20x_%7B0%7D-%5Cdelta%20%5Cimplies%20%5Cfrac%7Bx%7D%7Bx_0%7D%3E%5Cfrac%7Bx_%7B0%7D-%5Cdelta%7D%7Bx_%7B0%7D%7D

故可取%5Cdelta??s.t.??%5Cfrac%7Bx_%7B0%7D-%5Cdelta%7D%7Bx_%7B0%7D%7D%3Da%5E%5Cvarepsilon%20%5Ciff%20%5Cdelta%3Dx_%7B0%7D(-a%5E%5Cvarepsilon%20%2B1)%20%3E0

即有%5Cvert%20%5Clog_a%20x-%5Clog_a%20x_%7B0%7D%20%20%5Cvert%20%3C%5Cvarepsilon%20


綜上,f(x)%3D%5Clog_a%20x%20?(a%3E0a%5Cneq%201)(0%2C%2B%E2%88%9E)連續(xù).


注:本證明僅為個人方法,如有雷同,純屬巧合.


如果讀者有更好的方法,或者發(fā)現(xiàn)問題,歡迎指出!

對數(shù)函數(shù)連續(xù)性的證明的評論 (共 條)

分享到微博請遵守國家法律
丘北县| 亳州市| 乌兰察布市| 赣州市| 河间市| 巫山县| 黎城县| 大渡口区| 保定市| 新龙县| 神池县| 巴彦淖尔市| 滦平县| 民和| 白沙| 含山县| 南陵县| 桃源县| 武义县| 凤凰县| 阿拉善左旗| 搜索| 富阳市| 高州市| 新乡市| 绵阳市| 镇巴县| 乌恰县| 黔南| 安泽县| 台中县| 舒兰市| 砚山县| 阿拉尔市| 南投市| 江达县| 衡南县| 游戏| 建宁县| 分宜县| 靖州|