最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網(wǎng) 會(huì)員登陸 & 注冊

三角函數(shù)家族科普大全(二):探尋家族24個(gè)函數(shù)的定義域、值域、圖像、導(dǎo)函數(shù)及原函數(shù)

書接上回,繼續(xù)探訪剩余兩大類函數(shù),沒有看過第一期的,可點(diǎn)此前往第一期觀看三角函數(shù)家族第一期科普(本篇文章也是建議在電腦端進(jìn)行觀看,公式都是以圖片的形式插入的,如果在手機(jī)端觀看排版可能會(huì)出現(xiàn)問題,影響觀感)

三.雙曲正弦、雙曲余弦、雙曲正切、雙曲余切、雙曲正割、雙曲余割

從這類函數(shù)開始,大家可能就比較陌生了,可能大部分人都沒有聽說過,沒關(guān)系,馬上來進(jìn)行介紹

1.y%3Dsinhx%3D%5Cfrac%7Be%5Ex-%5Cfrac%7B1%7D%7Be%5Ex%7D%20%7D%7B2%7D%20,也就是雙曲正弦函數(shù),定義域?yàn)?img type="latex" class="latex" src="http://api.bilibili.com/x/web-frontend/mathjax/tex?formula=x%5Cin%20(-%E2%88%9E%2C%2B%E2%88%9E)" alt="x%5Cin%20(-%E2%88%9E%2C%2B%E2%88%9E)">,值域?yàn)?img type="latex" class="latex" src="http://api.bilibili.com/x/web-frontend/mathjax/tex?formula=y%5Cin%20(-%E2%88%9E%2C%2B%E2%88%9E)" alt="y%5Cin%20(-%E2%88%9E%2C%2B%E2%88%9E)">,導(dǎo)函數(shù)為(sinhx)'%3D(%5Cfrac%7Be%5Ex-%5Cfrac%7B1%7D%7Be%5Ex%7D%20%7D%7B2%7D%20)'%3D%5Cfrac%7Be%5Ex%2B%5Cfrac%7B1%7D%7Be%5Ex%7D%20%7D%7B2%7D%20%3Dcoshx,原函數(shù)為%E2%88%ABsinhxdx%3D%E2%88%AB%5Cfrac%7Be%5Ex-%5Cfrac%7B1%7D%7Be%5Ex%7D%20%7D%7B2%7D%20dx%3D%5Cfrac%7Be%5Ex%2B%5Cfrac%7B1%7D%7Be%5Ex%7D%20%7D%7B2%7D%2Bc%20%3Dcoshx%2Bc

y=sinhx圖像

2.y%3Dcoshx%3D%5Cfrac%7Be%5Ex%2B%5Cfrac%7B1%7D%7Be%5Ex%7D%20%7D%7B2%7D%20,也就是雙曲余弦函數(shù),定義域?yàn)?img type="latex" class="latex" src="http://api.bilibili.com/x/web-frontend/mathjax/tex?formula=x%5Cin%20(-%E2%88%9E%2C%2B%E2%88%9E)" alt="x%5Cin%20(-%E2%88%9E%2C%2B%E2%88%9E)">,值域?yàn)?img type="latex" class="latex" src="http://api.bilibili.com/x/web-frontend/mathjax/tex?formula=y%5Cin%20%5B1%2C%2B%E2%88%9E)" alt="y%5Cin%20%5B1%2C%2B%E2%88%9E)">,導(dǎo)函數(shù)為(coshx)'%3D(%5Cfrac%7Be%5Ex%2B%5Cfrac%7B1%7D%7Be%5Ex%7D%20%7D%7B2%7D%20)'%3D%5Cfrac%7Be%5Ex-%5Cfrac%7B1%7D%7Be%5Ex%7D%20%7D%7B2%7D%20%3Dsinhx,原函數(shù)為%E2%88%ABcoshxdx%3D%E2%88%AB%5Cfrac%7Be%5Ex%2B%5Cfrac%7B1%7D%7Be%5Ex%7D%20%7D%7B2%7D%20dx%3D%5Cfrac%7Be%5Ex-%5Cfrac%7B1%7D%7Be%5Ex%7D%20%7D%7B2%7D%20%2Bc%3Dsinhx%2Bc

y=coshx圖像

3.y%3Dtanhx%3D%5Cfrac%7Be%5Ex-%5Cfrac%7B1%7D%7Be%5Ex%7D%20%7D%7Be%5Ex%2B%5Cfrac%7B1%7D%7Be%5Ex%7D%20%7D%20,也就是雙曲正切函數(shù),即雙曲正弦函數(shù)除以雙曲余弦函數(shù),定義域?yàn)?img type="latex" class="latex" src="http://api.bilibili.com/x/web-frontend/mathjax/tex?formula=x%5Cin%20(-%E2%88%9E%2C%2B%E2%88%9E)" alt="x%5Cin%20(-%E2%88%9E%2C%2B%E2%88%9E)">,值域?yàn)?img type="latex" class="latex" src="http://api.bilibili.com/x/web-frontend/mathjax/tex?formula=y%5Cin%20(-1%2C1)" alt="y%5Cin%20(-1%2C1)">,導(dǎo)函數(shù)為(tanhx)'%3D(%5Cfrac%7Bsinhx%7D%7Bcoshx%7D%20)'%3D%5Cfrac%7B(sinhx)'*coshx-sinhx*(coshx)'%7D%7B(coshx)%5E2%7D%20%3D%5Cfrac%7B(coshx)%5E2-(sinhx)%5E2%7D%7B(coshx)%5E2%7D%20%3D%5Cfrac%7B1%7D%7B(coshx)%5E2%7D%20%3D(sechx)%5E2原函數(shù)為%E2%88%ABtanhxdx%3D%E2%88%AB%5Cfrac%7Bsinhx%7D%7Bcoshx%7Ddx%20%3D%E2%88%AB%5Cfrac%7Bd(coshx)%7D%7Bcoshx%7D%20%3Dln(coshx)%2Bc

Tips:對(duì)于雙曲正弦函數(shù)和雙曲余弦函數(shù),有關(guān)系式(coshx)%5E2-(sinhx)%5E2%3D1,證明方法為(coshx)%5E2-(sinhx)%5E2%3D(coshx%2Bsinhx)(coshx-sinhx)%3De%5Ex*%5Cfrac%7B1%7D%7Be%5Ex%7D%20%3D1

y=tanhx圖像

4.y%3Dcothx%3D%5Cfrac%7Be%5Ex%2B%5Cfrac%7B1%7D%7Be%5Ex%7D%20%7D%7Be%5Ex-%5Cfrac%7B1%7D%7Be%5Ex%7D%7D%20,也就是雙曲余切函數(shù),即雙曲余弦函數(shù)除以雙曲正弦函數(shù),因?yàn)殡p曲正弦函數(shù)作為分母,定義域需要滿足sinhx%5Cneq%200,即x%5Cin%20(-%E2%88%9E%2C0)%5Ccup%20(0%2C%2B%E2%88%9E),值域?yàn)?img type="latex" class="latex" src="http://api.bilibili.com/x/web-frontend/mathjax/tex?formula=y%5Cin%20(-%E2%88%9E%2C-1)%5Ccup%20(1%2C%2B%E2%88%9E)" alt="y%5Cin%20(-%E2%88%9E%2C-1)%5Ccup%20(1%2C%2B%E2%88%9E)">,導(dǎo)函數(shù)為(cothx)'%3D(%5Cfrac%7Bcoshx%7D%7Bsinhx%7D)'%3D%5Cfrac%7B(coshx)'*sinhx-coshx*(sinhx)'%7D%7B(sinhx)%5E2%7D%20%20%3D%5Cfrac%7B(sinhx)%5E2-(coshx)%5E2%7D%7B(sinhx)%5E2%7D%20%3D-%5Cfrac%7B1%7D%7B(sinhx)%5E2%7D%20%3D-(cschx)%5E2原函數(shù)為%E2%88%ABcothxdx%3D%E2%88%AB%5Cfrac%7Bcoshx%7D%7Bsinhx%7D%20dx%3D%E2%88%AB%5Cfrac%7Bd(sinhx)%7D%7Bsinhx%7D%20%3Dln%5Cvert%20sinhx%20%5Cvert%20%2Bc

y=cothx圖像

5.y%3Dsechx%3D%5Cfrac%7B2%7D%7Be%5Ex%2B%5Cfrac%7B1%7D%7Be%5Ex%7D%20%20%7D%20,也就是雙曲正割函數(shù),即雙曲余弦函數(shù)的倒數(shù),定義域?yàn)?img type="latex" class="latex" src="http://api.bilibili.com/x/web-frontend/mathjax/tex?formula=x%5Cin%20(-%E2%88%9E%2C%2B%E2%88%9E)" alt="x%5Cin%20(-%E2%88%9E%2C%2B%E2%88%9E)">,值域?yàn)?img type="latex" class="latex" src="http://api.bilibili.com/x/web-frontend/mathjax/tex?formula=y%5Cin%20(0%2C1%5D" alt="y%5Cin%20(0%2C1%5D">,導(dǎo)函數(shù)為(sechx)'%3D(%5Cfrac%7B1%7D%7Bcoshx%7D%20)'%3D%5Cfrac%7B1'*coshx-1*(coshx)'%7D%7B(coshx)%5E2%7D%20%3D%5Cfrac%7B-sinhx%7D%7B(coshx)%5E2%7D%20%3D-%5Cfrac%7Bsinhx%7D%7Bcoshx%7D%20*%5Cfrac%7B1%7D%7Bcoshx%7D%20%3D-sechx*tanhx原函數(shù)為%E2%88%ABsechxdx%3D%E2%88%AB%5Cfrac%7B2%7D%7Be%5Ex%2B%5Cfrac%7B1%7D%7Be%5Ex%7D%20%7D%20dx%3D2%E2%88%AB%5Cfrac%7Be%5Ex%7D%7B(e%5Ex)%5E2%2B1%7D%20dx%3D2%E2%88%AB%5Cfrac%7Bd(e%5Ex)%7D%7B(e%5Ex)%5E2%2B1%7D%20%3D2arctane%5Ex%2Bc

y=sechx圖像

6.y%3Dcschx%3D%5Cfrac%7B2%7D%7Be%5Ex-%5Cfrac%7B1%7D%7Be%5Ex%7D%20%7D%20,也就是雙曲余割函數(shù),即雙曲正弦函數(shù)的倒數(shù),因?yàn)殡p曲正弦函數(shù)作為分母,定義域需要滿足sinhx%5Cneq%200,即x%5Cin%20(-%E2%88%9E%2C0)%5Ccup%20(0%2C%2B%E2%88%9E),值域?yàn)?img type="latex" class="latex" src="http://api.bilibili.com/x/web-frontend/mathjax/tex?formula=y%5Cin%20(-%E2%88%9E%2C0)%5Ccup%20(0%2C%2B%E2%88%9E)" alt="y%5Cin%20(-%E2%88%9E%2C0)%5Ccup%20(0%2C%2B%E2%88%9E)">

y=cschx圖像

導(dǎo)函數(shù)為(cschx)'%3D(%5Cfrac%7B1%7D%7Bsinhx%7D%20)'%3D%5Cfrac%7B1'*sinhx-1*(sinhx)'%7D%7B(sinhx)%5E2%7D%20%3D%5Cfrac%7B-coshx%7D%7B(sinhx)%5E2%7D%20%3D-%5Cfrac%7Bcoshx%7D%7Bsinhx%7D%20*%5Cfrac%7B1%7D%7Bsinhx%7D%20%3D-cschx*cothx原函數(shù)推導(dǎo)過程如下

y=cschx求原函數(shù)

四.反雙曲正弦、反雙曲余弦、反雙曲正切、反雙曲余切、反雙曲正割、反雙曲余割

或許你已經(jīng)猜到了,沒錯(cuò),這一類函數(shù)又是與前面一類相對(duì)應(yīng)的函數(shù)關(guān)于y%3Dx對(duì)稱,同樣的,有一部分反函數(shù)對(duì)稱之后的圖像會(huì)導(dǎo)致一個(gè)x值對(duì)應(yīng)多個(gè)y值,需要舍棄掉其中一個(gè)分支,下面展開介紹

1.y%3Darsinhx%3Dln(x%2B%5Csqrt%7Bx%5E2%2B1%7D%20),也就是反雙曲正弦函數(shù)

y%3Dsinhx%3D%5Cfrac%7Be%5Ex-%5Cfrac%7B1%7D%7Be%5Ex%7D%20%7D%7B2%7D%20關(guān)于y%3Dx對(duì)稱,定義域?yàn)?img type="latex" class="latex" src="http://api.bilibili.com/x/web-frontend/mathjax/tex?formula=x%5Cin%20(-%E2%88%9E%2C%2B%E2%88%9E)" alt="x%5Cin%20(-%E2%88%9E%2C%2B%E2%88%9E)">,值域?yàn)?img type="latex" class="latex" src="http://api.bilibili.com/x/web-frontend/mathjax/tex?formula=y%5Cin%20(-%E2%88%9E%2C%2B%E2%88%9E)" alt="y%5Cin%20(-%E2%88%9E%2C%2B%E2%88%9E)">

y=arsinhx圖像

導(dǎo)函數(shù)為(arsinhx)'%3D(ln(x%2B%5Csqrt%7Bx%5E2%2B1%7D)%20)'%3D%5Cfrac%7B1%2B%5Cfrac%7B2x%7D%7B2%5Csqrt%7Bx%5E2%2B1%7D%20%7D%20%7D%7Bx%2B%5Csqrt%7Bx%5E2%2B1%7D%20%7D%20%3D%5Cfrac%7B%5Csqrt%7Bx%5E2%2B1%7D%2Bx%20%7D%7B(x%2B%5Csqrt%7Bx%5E2%2B1%7D%20)*%5Csqrt%7Bx%5E2%2B1%7D%20%7D%20%3D%5Cfrac%7B1%7D%7B%5Csqrt%7Bx%5E2%2B1%7D%20%7D%20再利用分部積分法,求得原函數(shù)為

y=arsinhx求原函數(shù)

2.y%3Darcoshx%3Dln(x%2B%5Csqrt%7Bx%5E2-1%7D%20),也就是反雙曲余弦函數(shù)

y%3Dcoshx%3D%5Cfrac%7Be%5Ex%2B%5Cfrac%7B1%7D%7Be%5Ex%7D%20%7D%7B2%7D%20關(guān)于y%3Dx對(duì)稱,但是對(duì)稱之后的圖像會(huì)導(dǎo)致一個(gè)x值對(duì)應(yīng)兩個(gè)y值,數(shù)學(xué)上只選取位于x軸上方的分支,舍棄掉x軸下方的分支,所以值域?yàn)?img type="latex" class="latex" src="http://api.bilibili.com/x/web-frontend/mathjax/tex?formula=y%5Cin%20%5B0%2C%2B%E2%88%9E)" alt="y%5Cin%20%5B0%2C%2B%E2%88%9E)">。定義域需要同時(shí)滿足x%5E2-1%5Cgeq%200%E4%B8%94x%2B%5Csqrt%7Bx%5E2-1%7D%20%3E0,解不等式組得到x%5Cin%20%5B1%2C%2B%E2%88%9E)

y=arcoshx圖像

導(dǎo)函數(shù)為(arcoshx)'%3D(ln(x%2B%5Csqrt%7Bx%5E2-1%7D))'%3D%5Cfrac%7B1%2B%5Cfrac%7B2x%7D%7B2%5Csqrt%7Bx%5E2-1%7D%20%7D%20%7D%7Bx%2B%5Csqrt%7Bx%5E2-1%7D%20%7D%20%20%3D%5Cfrac%7B%5Csqrt%7Bx%5E2-1%7D%20%2Bx%20%7D%7B(x%2B%5Csqrt%7Bx%5E2-1%7D%20)*%5Csqrt%7Bx%5E2-1%7D%20%20%7D%20%3D%5Cfrac%7B1%7D%7B%5Csqrt%7Bx%5E2-1%7D%20%7D%20再利用分部積分法,求得原函數(shù)為

y=arcoshx求原函數(shù)

3.y%3Dartanhx%3D%5Cfrac%7B1%7D%7B2%7D%20ln%5Cfrac%7B1%2Bx%7D%7B1-x%7D%20,也就是反雙曲正切函數(shù),與y%3Dtanhx%3D%5Cfrac%7Be%5Ex-%5Cfrac%7B1%7D%7Be%5Ex%7D%20%7D%7Be%5Ex%2B%5Cfrac%7B1%7D%7Be%5Ex%7D%20%7D%20關(guān)于y%3Dx對(duì)稱,定義域需要同時(shí)滿足%5Cfrac%7B1%2Bx%7D%7B1-x%7D%20%3E0%E4%B8%941-x%5Cneq%200,解不等式組得到x%5Cin%20(-1%2C1),值域?yàn)?img type="latex" class="latex" src="http://api.bilibili.com/x/web-frontend/mathjax/tex?formula=y%5Cin%20(-%E2%88%9E%2C%2B%E2%88%9E)" alt="y%5Cin%20(-%E2%88%9E%2C%2B%E2%88%9E)">

y=artanhx圖像

導(dǎo)函數(shù)為(artanhx)'%3D(%5Cfrac%7B1%7D%7B2%7D%20ln%5Cfrac%7B1%2Bx%7D%7B1-x%7D%20)'%3D%5Cfrac%7B1%7D%7B2%7D%20%5Bln(1%2Bx)-ln(1-x)%5D'%3D%5Cfrac%7B1%7D%7B2%7D%20(%5Cfrac%7B1%7D%7B1%2Bx%7D%20%2B%5Cfrac%7B1%7D%7B1-x%7D%20)%3D%5Cfrac%7B1%7D%7B2%7D*%20%5Cfrac%7B2%7D%7B1-x%5E2%7D%20%3D%5Cfrac%7B1%7D%7B1-x%5E2%7D%20再利用分部積分法,求得原函數(shù)為

y=artanhx求原函數(shù)

4.y%3Darcothx%3D%5Cfrac%7B1%7D%7B2%7D%20ln%5Cfrac%7Bx%2B1%7D%7Bx-1%7D%20,也就是反雙曲余切函數(shù),與y%3Dcothx%3D%5Cfrac%7Be%5Ex%2B%5Cfrac%7B1%7D%7Be%5Ex%7D%20%7D%7Be%5Ex-%5Cfrac%7B1%7D%7Be%5Ex%7D%7D%20關(guān)于y%3Dx對(duì)稱,定義域需要同時(shí)滿足%5Cfrac%7Bx%2B1%7D%7Bx-1%7D%20%3E0%E4%B8%94x-1%5Cneq%200,解不等式組得到x%5Cin%20(-%E2%88%9E%2C-1)%5Ccup%20(1%2C%2B%E2%88%9E),值域?yàn)?img type="latex" class="latex" src="http://api.bilibili.com/x/web-frontend/mathjax/tex?formula=y%5Cin%20%20(-%E2%88%9E%2C0)%5Ccup%20(0%2C%2B%E2%88%9E)" alt="y%5Cin%20%20(-%E2%88%9E%2C0)%5Ccup%20(0%2C%2B%E2%88%9E)">

y=arcothx圖像

導(dǎo)函數(shù)為(arcothx)'%3D(%5Cfrac%7B1%7D%7B2%7D%20ln%5Cfrac%7Bx%2B1%7D%7Bx-1%7D%20)'%3D%5Cfrac%7B1%7D%7B2%7D%20%5Bln(x%2B1)-ln(x-1)%5D'%3D%5Cfrac%7B1%7D%7B2%7D%20(%5Cfrac%7B1%7D%7Bx%2B1%7D-%5Cfrac%7B1%7D%7Bx-1%7D%20%20)%3D%5Cfrac%7B1%7D%7B2%7D%20*%5Cfrac%7B-2%7D%7Bx%5E2-1%7D%20%3D%5Cfrac%7B1%7D%7B1-x%5E2%7D%20

再利用分部積分法,求得原函數(shù)為

y=arcothx求原函數(shù)

5.y%3Darsechx%3Dln(%5Cfrac%7B1%2B%5Csqrt%7B1-x%5E2%7D%20%7D%7Bx%7D%20),也就是反雙曲正割函數(shù),與y%3Dsechx%3D%5Cfrac%7B2%7D%7Be%5Ex%2B%5Cfrac%7B1%7D%7Be%5Ex%7D%20%20%7D%20關(guān)于y%3Dx對(duì)稱,但是對(duì)稱之后的圖像會(huì)導(dǎo)致一個(gè)x值對(duì)應(yīng)兩個(gè)y值,數(shù)學(xué)上只選取位于x軸上方的分支,舍棄掉x軸下方的分支,所以值域?yàn)?img type="latex" class="latex" src="http://api.bilibili.com/x/web-frontend/mathjax/tex?formula=y%5Cin%20%5B0%2C%2B%E2%88%9E)" alt="y%5Cin%20%5B0%2C%2B%E2%88%9E)">。定義域需要同時(shí)滿足1-x%5E2%5Cgeq%200%E4%B8%94%5Cfrac%7B1%2B%5Csqrt%7B1-x%5E2%7D%20%7D%7Bx%7D%20%3E0%E4%B8%94x%5Cneq0%20,解不等式組得到x%5Cin%20(0%2C1%5D

y=arsechx圖像

導(dǎo)函數(shù)計(jì)算過程如下

y=arsechx求導(dǎo)函數(shù)

再利用分部積分法,求得原函數(shù)為

y=arsechx求原函數(shù)

6.最后一個(gè)函數(shù)為反雙曲余割函數(shù),它的解析式比較特殊,需要分兩段來寫,即%E5%BD%93x%5Cin(0%2C%2B%E2%88%9E)%E6%97%B6%EF%BC%8C%20y%3Darcschx%3Dln%5Cfrac%7B1%2B%5Csqrt%7B1%2Bx%5E2%7D%20%7D%7Bx%7D%20

%E5%BD%93x%5Cin%20(-%E2%88%9E%2C0)%E6%97%B6%EF%BC%8Cy%3Darcschx%3Dln%5Cfrac%7B1-%5Csqrt%7B1%2Bx%5E2%7D%20%7D%7Bx%7D%20

y%3Dcschx%3D%5Cfrac%7B2%7D%7Be%5Ex-%5Cfrac%7B1%7D%7Be%5Ex%7D%20%7D%20關(guān)于y%3Dx對(duì)稱

定義域?yàn)?img type="latex" class="latex" src="http://api.bilibili.com/x/web-frontend/mathjax/tex?formula=x%5Cin%20(-%E2%88%9E%2C0)%5Ccup%20(0%2C%2B%E2%88%9E)" alt="x%5Cin%20(-%E2%88%9E%2C0)%5Ccup%20(0%2C%2B%E2%88%9E)">,值域?yàn)?img type="latex" class="latex" src="http://api.bilibili.com/x/web-frontend/mathjax/tex?formula=y%5Cin%20(-%E2%88%9E%2C0)%5Ccup%20(0%2C%2B%E2%88%9E)" alt="y%5Cin%20(-%E2%88%9E%2C0)%5Ccup%20(0%2C%2B%E2%88%9E)">

y=arcschx圖像

相應(yīng)地,導(dǎo)函數(shù)也需要分成兩段來寫,即

y=arcschx求導(dǎo)函數(shù)

原函數(shù)也是一樣要分為兩段

y=arcschx求原函數(shù)


到此,三角函數(shù)家族里的24個(gè)函數(shù)已經(jīng)初步地介紹完了,我們可以發(fā)現(xiàn)一些有趣的規(guī)律,例如,我們在求反函數(shù)系列的12個(gè)函數(shù)的原函數(shù)時(shí),都清一色地用到了同一個(gè)方法,那就是分部積分法。另外更有意思的是,只要有sinx%E3%80%81cosx%E3%80%81sinhx%E3%80%81coshx這四個(gè)函數(shù),其余20個(gè)函數(shù)都可以由這四個(gè)函數(shù)衍生得到,例如正切函數(shù)是正弦函數(shù)除以余弦函數(shù)得到的,正割函數(shù)是由余弦函數(shù)取倒數(shù)得到的,反正弦函數(shù)是由正弦函數(shù)關(guān)于y%3Dx對(duì)稱得到的等等。(因?yàn)椴迦氲膱D片數(shù)量已快達(dá)到100張的上限,我還想繼續(xù)介紹反雙曲函數(shù)系列解析式的由來,下期將開啟一個(gè)番外篇來進(jìn)行介紹)

三角函數(shù)家族科普大全(二):探尋家族24個(gè)函數(shù)的定義域、值域、圖像、導(dǎo)函數(shù)及原函數(shù)的評(píng)論 (共 條)

分享到微博請(qǐng)遵守國家法律
华池县| 大邑县| 渝北区| 潼南县| 保定市| 永福县| 乐昌市| 吐鲁番市| 拜城县| 册亨县| 亳州市| 将乐县| 石渠县| 庆城县| 龙州县| 辽宁省| 济南市| 石河子市| 正安县| 南充市| 通道| 德格县| 江西省| 广西| 绍兴县| 平谷区| 邵阳市| 樟树市| 丰台区| 淅川县| 梁平县| 高台县| 扎囊县| 偃师市| 赤壁市| 汝南县| 马山县| 侯马市| 高密市| 西丰县| 兴山县|