最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網 會員登陸 & 注冊

復習筆記Day107:華中科技大學2023數學分析參考答案(上)

2023-02-23 23:38 作者:間宮_卓司  | 我要投稿

之前在專欄里面說了,可能很長一段時間不會更新數分高代相關的內容了,但是復試的內容里面還有數分高代,所以我不得不花點時間復健一下數分高代,復健的方式大概就是寫幾套考研真題,然后再把課本和之前的筆記看一遍,然后我要側重練習計算題,這次的高代就是吃了計算能力太差和基礎不扎實的虧(我想了半天線性方程組要怎么解···)

1.求極限%5Cbegin%7Bequation%7D%0A%5Clim%20_%7Bx%20%5Crightarrow%200%7D%5Cleft(-%5Cfrac%7B%5Ccot%20x%7D%7Be%5E%7B-2%20x%7D%7D%2B%5Cfrac%7B1%7D%7Be%5E%7B-x%7D%20%5Csin%20%5E2%20x%7D-%5Cfrac%7B1%7D%7Bx%5E2%7D%5Cright)%0A%5Cend%7Bequation%7D

這題可以通過直接通分來暴力求解,不過如果注意到極限%5Cunderset%7Bx%5Crightarrow%200%7D%7B%5Clim%7D%5Cleft(%20%5Cfrac%7B1%7D%7Bx%5E2%7D-%5Cfrac%7B1%7D%7B%5Csin%20%5E2x%7D%20%5Cright)%20存在的話,可以減少計算量

%5Cbegin%7Baligned%7D%0A%09%26-%5Cfrac%7B%5Ccot%20x%7D%7Be%5E%7B-2x%7D%7D%2B%5Cfrac%7B1%7D%7Be%5E%7B-x%7D%5Csin%20%5E2x%7D-%5Cfrac%7B1%7D%7Bx%5E2%7D%5C%5C%0A%09%26%3D%5Cfrac%7B-%5Ccos%20x%5Csin%20x%7D%7B%5Csin%20%5E2x%7De%5E%7B2x%7D%2B%5Cfrac%7B1%7D%7B%5Csin%20%5E2x%7De%5Ex-%5Cfrac%7B1%7D%7Bx%5E2%7D%5C%5C%0A%09%26%3D%5Cfrac%7B1%7D%7B%5Csin%20%5E2x%7D%5Cleft(%20-%5Cfrac%7B1%7D%7B2%7D%5Csin%202xe%5E%7B2x%7D%2Be%5Ex-1%20%5Cright)%20%2B%5Cleft(%20%5Cfrac%7B1%7D%7B%5Csin%20%5E2x%7D-%5Cfrac%7B1%7D%7Bx%5E2%7D%20%5Cright)%5C%5C%0A%5Cend%7Baligned%7D

現在分別來計算最后一式中兩項的極限,對于第一項,因為當x%5Crightarrow%200時,有

%5Csin%202xe%5E%7B2x%7D%3D%5Cleft(%202x%2Bo%5Cleft(%20x%5E2%20%5Cright)%20%5Cright)%20%5Cleft(%201%2B2x%2Bo%5Cleft(%20x%20%5Cright)%20%5Cright)%20%3D2x%2B4x%5E2%2Bo%5Cleft(%20x%5E2%20%5Cright)%20

e%5Ex-1%3Dx%2B%5Cfrac%7Bx%5E2%7D%7B2%7D%2Bo%5Cleft(%20x%5E2%20%5Cright)%20

所以

%5Cbegin%7Baligned%7D%0A%09%26-%5Cfrac%7B1%7D%7B2%7D%5Csin%202xe%5E%7B2x%7D%2Be%5Ex-1%5C%5C%0A%09%26%3D-%5Cfrac%7B1%7D%7B2%7D%5Cleft(%202x%2B4x%5E2%2Bo%5Cleft(%20x%5E2%20%5Cright)%20%5Cright)%20%2Bx%2B%5Cfrac%7Bx%5E2%7D%7B2%7D%2Bo%5Cleft(%20x%5E2%20%5Cright)%5C%5C%0A%09%26%3D-%5Cfrac%7B3%7D%7B2%7Dx%5E2%2Bo(x%5E2)%5C%5C%0A%5Cend%7Baligned%7D

從而

%5Cunderset%7Bx%5Crightarrow%200%7D%7B%5Clim%7D%5Cfrac%7B1%7D%7B%5Csin%20%5E2x%7D%5Cleft(%20-%5Cfrac%7B1%7D%7B2%7D%5Csin%202xe%5E%7B2x%7D%2Be%5Ex-1%20%5Cright)%20%3D%5Cunderset%7Bx%5Crightarrow%200%7D%7B%5Clim%7D%5Cfrac%7B1%7D%7Bx%5E2%7D%5Cleft(%20-%5Cfrac%7B3%7D%7B2%7Dx%5E2%2Bo%5Cleft(%20x%5E2%20%5Cright)%20%5Cright)%20%3D-%5Cfrac%7B3%7D%7B2%7D

對于第二項,有

%5Cbegin%7Baligned%7D%0A%09%26%5Cunderset%7Bx%5Crightarrow%200%7D%7B%5Clim%7D%5Cleft(%20%5Cfrac%7B1%7D%7B%5Csin%20%5E2x%7D-%5Cfrac%7B1%7D%7Bx%5E2%7D%20%5Cright)%5C%5C%0A%09%26%3D%5Cunderset%7Bx%5Crightarrow%200%7D%7B%5Clim%7D%5Cfrac%7B%5Cleft(%20x%2B%5Csin%20x%20%5Cright)%20%5Cleft(%20x-%5Csin%20x%20%5Cright)%7D%7Bx%5E2%5Csin%20%5E2x%7D%5C%5C%0A%09%26%3D%5Cunderset%7Bx%5Crightarrow%200%7D%7B%5Clim%7D%5Cfrac%7B%5Cleft(%20x%2Bx%2Bo%5Cleft(%20x%20%5Cright)%20%5Cright)%20%5Cleft(%20x-%5Cleft(%20x-%5Cfrac%7Bx%5E3%7D%7B6%7D%2Bo%5Cleft(%20x%5E3%20%5Cright)%20%5Cright)%20%5Cright)%7D%7Bx%5E4%7D%5C%5C%0A%09%26%3D%5Cunderset%7Bx%5Crightarrow%200%7D%7B%5Clim%7D%5Cfrac%7B%5Cleft(%202x%2Bo%5Cleft(%20x%20%5Cright)%20%5Cright)%20%5Cleft(%20%5Cfrac%7Bx%5E3%7D%7B6%7D%2Bo%5Cleft(%20x%5E3%20%5Cright)%20%5Cright)%7D%7Bx%5E4%7D%3D%5Cfrac%7B1%7D%7B3%7D%5C%5C%0A%5Cend%7Baligned%7D

所以%E5%8E%9F%E5%BC%8F%3D-%5Cfrac%7B3%7D%7B2%7D%2B%5Cfrac%7B1%7D%7B3%7D%3D-%5Cfrac%7B7%7D%7B6%7D

2.計算%5Cbegin%7Bequation%7D%0A%5Cint_0%5E%7B%2B%5Cinfty%7D%20e%5E%7B-%5Cfrac%7B1%7D%7B4%20s%7D%7D%20s%5E%7B-%5Cfrac%7B3%7D%7B2%7D%7D%20e%5E%7B-s%7D%20%5Cmathrm%7B~d%7D%20s%0A%5Cend%7Bequation%7D

這題還是比較哈人的,一開始我覺得它和90.2有點像,但是好像又不太一樣,經過一番嘗試后,我發(fā)現通過換元法可能可以把夾在兩個e中間的s消去

%5Cbegin%7Baligned%7D%0A%09%26%5Cint_0%5E%7B%2B%5Cinfty%7D%7Be%5E%7B-%5Cfrac%7B1%7D%7B4s%7D%7Ds%5E%7B-%5Cfrac%7B3%7D%7B2%7D%7De%5E%7B-s%7D%5Cxlongequal%7Bu%5E%7B%5Calpha%7D%3Ds%7D%7D%5Cint_0%5E%7B%2B%5Cinfty%7D%7Be%5E%7B-%5Cfrac%7B1%7D%7B4u%5E%7B%5Calpha%7D%7D%7Du%5E%7B-%5Cfrac%7B3%7D%7B2%7D%5Calpha%7De%5E%7B-u%5E%7B%5Calpha%7D%7D%5Calpha%20u%5E%7B%5Calpha%20-1%7D%5Cmathrm%7Bd%7Du%7D%5C%5C%0A%09%26%3D%5Calpha%20%5Cint_0%5E%7B%2B%5Cinfty%7D%7Be%5E%7B-%5Cfrac%7B1%7D%7B4u%5E%7B%5Calpha%7D%7D%7Du%5E%7B-%5Cfrac%7B1%7D%7B2%7D%5Calpha%20-1%7De%5E%7B-u%5E%7B%5Calpha%7D%7D%5Cmathrm%7Bd%7Du%7D%5C%5C%0A%5Cend%7Baligned%7D

%5Calpha%3D-2(注意上下限要互換,上面那個式子只在%5Calpha%3E0的時候是對的)

可得%5Cint_0%5E%7B%2B%5Cinfty%7D%7Be%5E%7B-%5Cfrac%7B1%7D%7B4s%7D%7Ds%5E%7B-%5Cfrac%7B3%7D%7B2%7D%7De%5E%7B-s%7D%3D%7D2%5Cint_0%5E%7B%2B%5Cinfty%7D%7Be%5E%7B-%5Cfrac%7Bu%5E2%7D%7B4%7D-%5Cfrac%7B1%7D%7Bu%5E2%7D%7D%5Cmathrm%7Bd%7Du%7D

進而

%5Cint_0%5E%7B%2B%5Cinfty%7D%7Be%5E%7B-%5Cfrac%7Bu%5E2%7D%7B4%7D-%5Cfrac%7B1%7D%7Bu%5E2%7D%7D%5Cmathrm%7Bd%7Du%7D%5Cxlongequal%7By%3D2c%7D2%5Cint_0%5E%7B%2B%5Cinfty%7D%7Be%5E%7B-y%5E2-%5Cfrac%7B1%7D%7B4y%5E2%7D%7D%5Cmathrm%7Bd%7Dy%7D

所以依90.2的結論,%5Ctext%7B%E5%8E%9F%E5%BC%8F%7D%3D2%5Ccdot%202%5Ccdot%20%5Cleft(%20%5Cfrac%7B1%7D%7B2%7D%5Csqrt%7B%5Cpi%7De%5E%7B-2%5Ccdot%20%5Cfrac%7B1%7D%7B2%7D%7D%20%5Cright)%20%3D2%5Csqrt%7B%5Cpi%7De%5E%7B-1%7D

3.判斷積分%5Cbegin%7Bequation%7D%0A%5Cint_0%5E%7B2%20%5Cpi%7D%20e%5E%7B-x%5E2%7D%20%5Ccos%20x%20%5Cmathrm%7B~d%7D%20x%0A%5Cend%7Bequation%7D的正負,并證明你的結論

這題我一開始想了很長時間,用積分第二中值定理搞了半天都沒有搞出來,后來我把被積函數的圖像畫了出來

雖然我知道e%5E%7B-x%5E2%7D收斂的很快,但是沒想到這么快,所以我覺得實際上證明這個結論并不需要很精確的估計,隨便估計一下就夠了

所以現在先來估計%5Cint_0%5E%7B%5Cfrac%7B%5Cpi%7D%7B2%7D%7D%7Be%5E%7B-x%5E2%7D%7D%5Ccos%20x%5Cmathrm%7Bd%7Dx

%5Cint_0%5E%7B%5Cfrac%7B%5Cpi%7D%7B2%7D%7D%7Be%5E%7B-x%5E2%7D%5Ccos%20x%5Cmathrm%7Bd%7Dx%7D%5Cge%20%5Cint_0%5E%7B%5Cfrac%7B%5Cpi%7D%7B4%7D%7D%7Be%5E%7B-x%5E2%7D%5Ccos%20x%5Cmathrm%7Bd%7Dx%7D%5Cge%20%5Cfrac%7B%5Cpi%7D%7B4%7D%5Cfrac%7B%5Csqrt%7B2%7D%7D%7B2%7De%5E%7B-%5Cfrac%7B%5Cpi%20%5E2%7D%7B4%5E2%7D%7D%3D%5Cfrac%7B%5Cpi%20%5Csqrt%7B2%7D%7D%7B8%7De%5E%7B-%5Cfrac%7B%5Cpi%20%5E2%7D%7B16%7D%7D

再來估計%5Cint_%7B%5Cfrac%7B%5Cpi%7D%7B2%7D%7D%5E%7B%5Cfrac%7B3%5Cpi%7D%7B2%7D%7D%7Be%5E%7B-x%5E2%7D%5Ccos%20x%5Cmathrm%7Bd%7Dx%7D

%5Cint_%7B%5Cfrac%7B%5Cpi%7D%7B2%7D%7D%5E%7B%5Cfrac%7B3%5Cpi%7D%7B2%7D%7D%7Be%5E%7B-x%5E2%7D%5Ccos%20x%5Cmathrm%7Bd%7Dx%7D%5Cge%20%5Cint_%7B%5Cfrac%7B%5Cpi%7D%7B2%7D%7D%5E%7B%5Cfrac%7B3%5Cpi%7D%7B2%7D%7D%7Be%5E%7B-x%7D%5Ccos%20x%5Cmathrm%7Bd%7Dx%7D,

%5Cleft(%20e%5E%7B-x%7D%5Ccos%20x%20%5Cright)%20'%3D-e%5E%7B-x%7D%5Csin%20x-e%5E%7B-x%7D%5Ccos%20x

所以e%5E%7B-x%7D%5Ccos%20x%5Cleft%5B%20%5Cfrac%7B%5Cpi%7D%7B2%7D%2C%5Cfrac%7B3%7D%7B2%7D%5Cpi%20%5Cright%5D%20上有最小值-%5Cfrac%7B%5Csqrt%7B2%7D%7D%7B2%7De%5E%7B-%5Cfrac%7B5%5Cpi%7D%7B4%7D%7D,所以

%5Cint_%7B%5Cfrac%7B%5Cpi%7D%7B2%7D%7D%5E%7B%5Cfrac%7B3%5Cpi%7D%7B2%7D%7D%7Be%5E%7B-x%5E2%7D%5Ccos%20x%5Cmathrm%7Bd%7Dx%7D%5Cge%20-%5Cfrac%7B%5Csqrt%7B2%7D%5Cpi%7D%7B2%7De%5E%7B-%5Cfrac%7B5%5Cpi%7D%7B4%7D%7D

做比可得

%5Cfrac%7B%5Cfrac%7B%5Cpi%20%5Csqrt%7B2%7D%7D%7B8%7De%5E%7B-%5Cfrac%7B%5Cpi%20%5E2%7D%7B16%7D%7D%7D%7B%5Cfrac%7B%5Csqrt%7B2%7D%5Cpi%7D%7B2%7De%5E%7B-%5Cfrac%7B5%5Cpi%7D%7B4%7D%7D%7D%3D%5Cfrac%7Be%5E%7B%5Cfrac%7B5%7D%7B4%7D%5Cpi%20-%5Cfrac%7B%5Cpi%20%5E2%7D%7B16%7D%7D%7D%7B4%7D%5Cge%20%5Cfrac%7Be%5E%7B%5Cfrac%7B15%7D%7B4%7D-1%7D%7D%7B4%7D%3D%5Cfrac%7Be%5E%7B%5Cfrac%7B11%7D%7B4%7D%7D%7D%7B4%7D%5Cge%20%5Cfrac%7B2%5E2%7D%7B4%7D%5Cge%201

所以

%5Cbegin%7Bequation%7D%0A%5Cint_0%5E%7B2%20%5Cpi%7D%20e%5E%7B-x%5E2%7D%20%5Ccos%20x%20%5Cmathrm%7B~d%7D%20x%5Cge%5Cint_0%5E%7B%5Cfrac%7B3%5Cpi%7D%7B2%7D%7D%7Be%5E%7B-x%5E2%7D%5Ccos%20x%5Cmathrm%7Bd%7Dx%7D%5Cge%200%0A%5Cend%7Bequation%7D

4.設%5Cbegin%7Bequation%7D%0AI%5Cleft(x_0%2C%20x_1%5Cright)%3D%5Ciint_%7B%5CSigma%7D%20%5Cfrac%7Be%5E%7B-x%5E%5Calpha%7D%7D%7B%5Csqrt%7By%5E2%2Bz%5E2%7D%7D%20%5Cmathrm%7B~d%7D%20y%20%5Cmathrm%7B~d%7D%20z%0A%5Cend%7Bequation%7D,其中%5CSigma為拋物面x%3Dy%5E2%2Bz%5E2與平面x%3Dx_0%2Cx%3Dx_1所圍立體表面的內側,%5Calpha%3E0x_1%3Ex_0%3E0,求極限

%5Cunderset%7B%5Cbegin%7Barray%7D%7Bc%7D%0A%09x_0%5Crightarrow%200%5C%5C%0A%09x_1%5Crightarrow%20%2B%5Cinfty%5C%5C%0A%5Cend%7Barray%7D%7D%7B%5Clim%7DI%5Cleft(%20x_0%2Cx_1%20%5Cright)%20

做換元y%3Dr%5Ccos%20%5Ctheta%20%2Cz%3Dr%5Csin%20%5Ctheta%20%2Cx%3Dr%5E2,可得

I%5Cleft(%20x_0%2Cx_1%20%5Cright)%20%3D%5Cint_0%5E%7B2%5Cpi%7D%7B%5Cmathrm%7Bd%7D%5Ctheta%20%5Cint_%7B%5Csqrt%7Bx_0%7D%7D%5E%7B%5Csqrt%7Bx_1%7D%7D%7Be%5E%7B-r%5E%7B2%5Calpha%7D%7D%5Cmathrm%7Bd%7Dr%7D%7D

那么

%5Cunderset%7B%5Cbegin%7Barray%7D%7Bc%7D%0A%09x_0%5Crightarrow%200%5C%5C%0A%09x_1%5Crightarrow%20%2B%5Cinfty%5C%5C%0A%5Cend%7Barray%7D%7D%7B%5Clim%7DI%5Cleft(%20x_0%2Cx_1%20%5Cright)%20%3D2%5Cpi%20%5Cint_0%5E%7B%2B%5Cinfty%7D%7Be%5E%7B-r%5E%7B2%5Calpha%7D%7D%5Cmathrm%7Bd%7Dr%7D%5Cxlongequal%7Br%5E%7B2%5Calpha%7D%3Dx%7D2%5Cpi%20%5Cint_0%5E%7B%2B%5Cinfty%7D%7B%5Cfrac%7B1%7D%7B2%5Calpha%7Dx%5E%7B%5Cfrac%7B1%7D%7B2%5Calpha%7D-1%7De%5E%7B-x%7D%5Cmathrm%7Bd%7Dx%7D%3D%5Cfrac%7B%5Cpi%7D%7B%5Calpha%7D%5CGamma%20%5Cleft(%20%5Cfrac%7B1%7D%7B2%5Calpha%7D%20%5Cright)%20

5.(1)證明:方程%5Cbegin%7Bequation%7D%0A(x%2B1)%5E%7Bx%2B1%7D%3De%20x%5Ex%0A%5Cend%7Bequation%7D有唯一正根

(x%2B1)%5E%7Bx%2B1%7D%3Dex%5Ex%5CLeftrightarrow%20e%5E%7B%5Cleft(%20x%2B1%20%5Cright)%20%5Cln%20%5Cleft(%20x%2B1%20%5Cright)%7D%3De%5E%7Bx%5Cln%20x%2B1%7D%5CLeftrightarrow%20e%5E%7B%5Cleft(%20x%2B1%20%5Cright)%20%5Cln%20%5Cleft(%20x%2B1%20%5Cright)%20-x%5Cln%20x-1%7D%3D1

所以只要證明f%5Cleft(%20x%20%5Cright)%20%3D%5Cleft(%20x%2B1%20%5Cright)%20%5Cln%20%5Cleft(%20x%2B1%20%5Cright)%20-x%5Cln%20x-1有唯一正根就好了,而

f'%5Cleft(%20x%20%5Cright)%20%3D%5Cln%20%5Cleft(%20%5Cfrac%7Bx%2B1%7D%7Bx%7D%20%5Cright)%20%3E0

所以f(x)是單調遞增的,進而f(0%5E%2B)%3D-1%3C0,f(1)%3D%5Cln4-1%3E0,所以有唯一正根

(2)設p(x)%3Dx-x%5E2,f(x)是二階連續(xù)可微函數,證明對任意非負整數k,成立

%5Cbegin%7Bequation%7D%0A%5Cint_k%5E%7Bk%2B1%7D%20f(x)%20%5Cmathrm%7Bd%7D%20x%3D%5Cfrac%7Bf(k%2B1)%2Bf(k)%7D%7B2%7D-%5Cfrac%7B1%7D%7B2%7D%20%5Cint_k%5E%7Bk%2B1%7D%20f%5E%7B%5Cprime%20%5Cprime%7D(x)%20p(x-%5Bx%5D)%20%5Cmathrm%7Bd%7D%20x%0A%5Cend%7Bequation%7D

這題考察的是歐拉-麥克勞林公式,謝惠民上面就有,一開始看到取整函數的時候可能會被嚇到,但是只需要注意到

%5Cint_k%5E%7Bk%2B1%7D%7Bf''%7D(x)p(x-%5Bx%5D)%5Cmathrm%7Bd%7Dx%3D%5Cint_k%5E%7Bk%2B1%7D%7Bf''%7D(x)p(x-k)%5Cmathrm%7Bd%7Dx

也就沒那么嚇人了

%5Cbegin%7Baligned%7D%0A%09%26%5Cint_k%5E%7Bk%2B1%7D%7Bf%5Cleft(%20x%20%5Cright)%20%5Cmathrm%7Bd%7Dx%7D%3D%5Cint_k%5E%7Bk%2B1%7D%7Bf%5Cleft(%20x%20%5Cright)%20%5Cmathrm%7Bd%7D%5Cleft(%20x-k-%5Cfrac%7B1%7D%7B2%7D%20%5Cright)%7D%5C%5C%0A%09%26%3D%5Cfrac%7Bf%5Cleft(%20k%2B1%20%5Cright)%20%2Bf%5Cleft(%20k%20%5Cright)%7D%7B2%7D-%5Cint_k%5E%7Bk%2B1%7D%7B%5Cleft(%20x-k-%5Cfrac%7B1%7D%7B2%7D%20%5Cright)%20f'%5Cleft(%20x%20%5Cright)%20%5Cmathrm%7Bd%7Dx%7D%5C%5C%0A%5Cend%7Baligned%7D

再次使用第一行的技巧,可得

%5Cbegin%7Baligned%7D%0A%09%26%5Cint_k%5E%7Bk%2B1%7D%7B%5Cleft(%20x-k-%5Cfrac%7B1%7D%7B2%7D%20%5Cright)%20f'%5Cleft(%20x%20%5Cright)%20%5Cmathrm%7Bd%7Dx%7D%3D%5Cint_k%5E%7Bk%2B1%7D%7Bf'%5Cleft(%20x%20%5Cright)%20%5Cmathrm%7Bd%7D%5Cfrac%7B1%7D%7B2%7D%5Cleft(%20x-k-%5Cfrac%7B1%7D%7B2%7D%20%5Cright)%20%5E2%7D%5C%5C%0A%09%26%3D%5Cint_k%5E%7Bk%2B1%7D%7Bf'%5Cleft(%20x%20%5Cright)%20%5Cmathrm%7Bd%7D%5Cfrac%7B1%7D%7B2%7D%5Cleft(%20x-k%20%5Cright)%20%5Cleft(%20x-k-1%20%5Cright)%7D%5C%5C%0A%09%26%3D%5Cint_k%5E%7Bk%2B1%7D%7Bf''%5Cleft(%20x%20%5Cright)%20%5Cfrac%7B1%7D%7B2%7D%5Cleft(%20x-k%20%5Cright)%20%5Cleft(%20x-k-1%20%5Cright)%20%5Cmathrm%7Bd%7Dx%7D%5C%5C%0A%09%26%3D%5Cfrac%7B1%7D%7B2%7D%5Cint_k%5E%7Bk%2B1%7D%7Bf''%5Cleft(%20x%20%5Cright)%20p%5Cleft(%20x-k%20%5Cright)%20%5Cmathrm%7Bd%7Dx%7D%5C%5C%0A%5Cend%7Baligned%7D

這就證明了結論

(3)計算極限%5Cbegin%7Bequation%7D%0A%5Clim%20_%7Bn%20%5Crightarrow%20%5Cinfty%7D%5Cleft(%5Cbeta%2B%5Cfrac%7B1%7D%7Bn%7D%5Cright)%5Cleft(%5Cbeta%2B%5Cfrac%7B2%7D%7Bn%7D%5Cright)%20%5Ccdots%5Cleft(%5Cbeta%2B%5Cfrac%7Bn%7D%7Bn%7D%5Cright)%0A%5Cend%7Bequation%7D

沒有想法,甚至懷疑是題目記錯了,湊不出定積分的形式

6.(1)對任意的x%3E0%2Cy%5Cin%5Cmathbb%7BR%7D,證明:%5Cbegin%7Bequation%7D%0Ax%20y%20%5Cleq%20x%20%5Cln%20x-x%2Be%5Ey%0A%5Cend%7Bequation%7D

這題好像是陳紀修上面的例題

g%5Cleft(%20y%20%5Cright)%20%3Dxy-x%5Cln%20x%2Bx-e%5Ey,則g'%5Cleft(%20y%20%5Cright)%20%3Dx-e%5Ey,故g(y)y%3D%5Cln%20x處取最大值,即g%5Cleft(%20y%20%5Cright)%20%5Cle%20g%5Cleft(%20%5Cln%20x%20%5Cright)%20%3D0

(2)設%5Calpha%2C%5Cbeta是任意非零實數,對正整數n,證明:

%5Cbegin%7Bequation%7D%0A%5Csum_%7Bk%3D0%7D%5En%5Cleft(%5Cbegin%7Barray%7D%7Bc%7D%0A%5Calpha%20%5C%5C%0Ak%0A%5Cend%7Barray%7D%5Cright)%5Cleft(%5Cbegin%7Barray%7D%7Bc%7D%0A%5Cbeta%20%5C%5C%0An-k%0A%5Cend%7Barray%7D%5Cright)%3D%5Cleft(%5Cbegin%7Barray%7D%7Bc%7D%0A%5Calpha%2B%5Cbeta%20%5C%5C%0An%0A%5Cend%7Barray%7D%5Cright)%20%0A%5Cend%7Bequation%7D

其中

%5Cleft(%5Cbegin%7Barray%7D%7Bc%7D%0A%5Calpha%20%5C%5C%0Ak%0A%5Cend%7Barray%7D%5Cright)%3D%5Cfrac%7B%5Calpha(%5Calpha-1)%20%5Ccdots(%5Calpha-k%2B1)%7D%7Bk%20!%7D%2C%5Cleft(%5Cbegin%7Barray%7D%7Bl%7D%0A%5Calpha%20%5C%5C%0A0%0A%5Cend%7Barray%7D%5Cright)%3D1

這題是史濟懷上面的例題,一方面,在收斂范圍內,有

%5Cleft(%201%2Bx%20%5Cright)%20%5E%7B%5Calpha%20%2B%5Cbeta%7D%3D%5Csum_%7Bn%3D0%7D%5E%7B%5Cinfty%7D%7B%5Cleft(%20%5Cbegin%7Barray%7D%7Bc%7D%0A%09%5Calpha%20%2B%5Cbeta%5C%5C%0A%09n%5C%5C%0A%5Cend%7Barray%7D%20%5Cright)%7Dx%5En

另一方面,有

%5Cbegin%7Baligned%7D%0A%09%26%5Cleft(%201%2Bx%20%5Cright)%20%5E%7B%5Calpha%20%2B%5Cbeta%7D%3D%5Cleft(%201%2Bx%20%5Cright)%20%5E%7B%5Calpha%7D%5Cleft(%201%2Bx%20%5Cright)%20%5E%7B%5Cbeta%7D%5C%5C%0A%09%26%3D%5Cleft(%20%5Csum_%7Bn%3D0%7D%5E%7B%5Cinfty%7D%7B%5Cleft(%20%5Cbegin%7Barray%7D%7Bc%7D%0A%09%5Calpha%5C%5C%0A%09n%5C%5C%0A%5Cend%7Barray%7D%20%5Cright)%20x%5En%7D%20%5Cright)%20%5Cleft(%20%5Csum_%7Bn%3D0%7D%5E%7B%5Cinfty%7D%7B%5Cleft(%20%5Cbegin%7Barray%7D%7Bc%7D%0A%09%5Cbeta%5C%5C%0A%09n%5C%5C%0A%5Cend%7Barray%7D%20%5Cright)%20x%5En%7D%20%5Cright)%5C%5C%0A%09%26%3D%5Csum_%7Bn%3D0%7D%5E%7B%5Cinfty%7D%7B%5Cleft(%20%5Csum_%7Bn%3D0%7D%5En%7B%5Cleft(%20%5Cbegin%7Barray%7D%7Bc%7D%0A%09%5Calpha%5C%5C%0A%09k%5C%5C%0A%5Cend%7Barray%7D%20%5Cright)%20%5Cleft(%20%5Cbegin%7Barray%7D%7Bc%7D%0A%09%5Cbeta%5C%5C%0A%09n-k%5C%5C%0A%5Cend%7Barray%7D%20%5Cright)%7D%20%5Cright)%7D%5C%5C%0A%5Cend%7Baligned%7D

這說明了%5Cbegin%7Bequation%7D%0A%5Csum_%7Bk%3D0%7D%5En%5Cleft(%5Cbegin%7Barray%7D%7Bc%7D%0A%5Calpha%20%5C%5C%0Ak%0A%5Cend%7Barray%7D%5Cright)%5Cleft(%5Cbegin%7Barray%7D%7Bc%7D%0A%5Cbeta%20%5C%5C%0An-k%0A%5Cend%7Barray%7D%5Cright)%3D%5Cleft(%5Cbegin%7Barray%7D%7Bc%7D%0A%5Calpha%2B%5Cbeta%20%5C%5C%0An%0A%5Cend%7Barray%7D%5Cright)%20%0A%5Cend%7Bequation%7D

因為b站的專欄一個只能放100張圖片,而一個公式算一張圖片,所以剩下的題目只能放到下去了






復習筆記Day107:華中科技大學2023數學分析參考答案(上)的評論 (共 條)

分享到微博請遵守國家法律
绥化市| 黑山县| 介休市| 兴山县| 华蓥市| 龙里县| 台安县| 奉新县| 山东| 太谷县| 涪陵区| 商都县| 漳浦县| 成武县| 南召县| 梓潼县| 三台县| 奈曼旗| 乐昌市| 沂源县| 藁城市| 中超| 从化市| 宝坻区| 定南县| 从江县| 银川市| 化州市| 固原市| 普格县| 诸城市| 泊头市| 凉城县| 城固县| 常山县| 安宁市| 积石山| 平邑县| 清新县| 且末县| 衡山县|