我的世界:真正的圓

很多人都在爭實際上存不存在圓這個問題
我就百度了一下
這篇答案比較中規(guī)中矩
大家可以看一下
ps:我不是原作者!
作者:Celestial
鏈接:https://www.zhihu.com/question/284974151/answer/776472192
來源:知乎
著作權(quán)歸作者所有。商業(yè)轉(zhuǎn)載請聯(lián)系作者獲得授權(quán),非商業(yè)轉(zhuǎn)載請注明出處。
關(guān)于π是無理數(shù)的證明隨便百度就有,也不麻煩,不談。
不懂題主在哪個地方猶豫不決,還是自以為發(fā)現(xiàn)了什么不得了的哲理。題主作為知乎用戶應(yīng)該上過帶學(xué),所以對自然界中的物理量應(yīng)該有個認識。那咱至少搞清這兩點:
任何人工測量的數(shù)值,都有最小分度值,即有限小數(shù)。所有物理量都需要拿儀器直接或間接測量,不存在無限精密的儀器,無限精密對應(yīng)于能量無窮大,這點不用我說了8。所以花錢買好尺子解決不了孩子的問題。
任何自然界中的物理量(實數(shù)域的連續(xù)變量),有百分之百的幾率是無理數(shù),即無限不循環(huán)小數(shù)。這里用“測度”這詞更嚴謹,在實數(shù)域(數(shù)軸)上,有理數(shù)測度為0。這是因為實數(shù)的稠密性,而有理數(shù)在數(shù)軸上總是離散分布的,每兩個臨近有理數(shù)之間都有無數(shù)個無理數(shù),隨機指定一點為有理數(shù)的概率為零。這就使得你去測自然界中的數(shù)據(jù),發(fā)現(xiàn)下一個精確位的數(shù)字根本無法預(yù)料。你覺得測準了,那再拿更精密的“尺子”,就會測出更多位數(shù)的新東西,那咱怎么會覺得這樣無限測下去這玩意居然有非零概率是個循環(huán)的?咱21世紀,做什么事得講概率,不要覺得要么循環(huán)要么不循環(huán),就55開。這里其實也暗含了任何常量也百分之百概率為無理數(shù),π,e,光速,普朗克常量,引力常量,精細結(jié)構(gòu)常數(shù)等等。(除非人為的用這些常數(shù)為單位去定義別的物理量,可使物理常數(shù)為單位1來簡化運算。不過這大概是為了減少考試的計算量)
那么,再精確的測量,也注定是不完美的,與本身物理量有偏差的。這個現(xiàn)象在生活中普遍存在,我們接受的任何信息(對應(yīng)測量值),都是通過各種形式的媒體(對應(yīng)儀器),那媒體報道難免出現(xiàn)偏差,我們當然無法得知完美的真相(對應(yīng)物理量)。那你們成天看新聞,怎么不捫心自問,“世界上有沒有完美的領(lǐng)導(dǎo)”這種問題?以前總愛說有圖有真相,現(xiàn)在圖8行了,一般都要求上視頻。先不說有沒有PS,就論圖片視頻本身,其拍攝者,是不是在拍攝的時候摻雜了自己主觀的認識?他是不是也跟用電鏡研究材料的那幫人似的,拍了一百張各種各樣的圖像和譜,然后拿出現(xiàn)象最符合自己觀點結(jié)論的四張拿去發(fā)paper?
扯遠了。世界上有完美的圓嗎?這根本就是一個偽問題。就像無法被驗證的命題不是一個偽命題一樣。就算我欽定了一個完美的圓,你也沒有一個完美的尺去無限精確的測量每一位數(shù)字。就算我欽定了完美的一秒,你也無法量出來一個完美的有理數(shù)1,因為你根本預(yù)料不到當我測1.0000之后測量的下一位,是不是還在-0.00005~0.00005之間。所以我認為題主糾結(jié)這些無聊的東西根本沒有意義,孩子包括大人學(xué)習(xí)過程中遇到以從前經(jīng)歷難以理解的東西,說明從前的經(jīng)歷太菜太虛了,這也是學(xué)習(xí)的目的之一,正確的認識就算當下理解不來也先接受下來,學(xué)的多了自然就會懂,以后還不懂那也注定吃不上這碗飯。
當然,你問我世界上存在不存在完美的圓,我說存在,我就明確可以告訴你這一點。圓形作為每個點到圓心距離都相等,周長/面積最小的圖形,還是很容易通過某些手段創(chuàng)造出來的,除了用圓規(guī)和各種以半徑相同原理的廣義圓規(guī),還可以在平靜的水面上放一個細線環(huán),在環(huán)內(nèi)滴入肥皂水,足夠長時間后環(huán)會自動擴張為完美的圓形。還可以還有很多方法,知乎用戶這么聰明,就沒必要說了。但有些人如果一定要覺得要考慮漲落,要考慮分子是坑坑洼洼的,那我只能說一切真理都有適用范圍,超出具體問題的范圍談反例那就叫抬杠了,別怪別人給扣帽子。
再說到圓周率π,古代用分數(shù)近似表示,因為需要的精度就那么大,沒必要那么精確,你要在生活中用它,也完全可以用有限小數(shù)去近似,沒問題的。然而現(xiàn)代我們知道,π有很多種定義方式,在數(shù)學(xué)物理的其他地方存在感很高,并不僅局限于周長/直徑。比如定義為y=sin(x)的最小正零點,再比如千奇百怪的級數(shù)定義等等,它本身當然是個無理數(shù),更強一點還是個超越數(shù)。我想說的意思,數(shù)學(xué)是從自然界所有現(xiàn)象表象中,抽象出的學(xué)問,盡管自然界的數(shù)據(jù)總是那么糟糕,我們的測量也總是那么粗糙,但是我們完全可以在紙上,在計算機上,用數(shù)學(xué)去計算推導(dǎo)出一些結(jié)論。在數(shù)學(xué)中你盡可以用有理數(shù)甚至整數(shù)去給某個物理量賦值,你盡可以相信某個物體上的形狀是個“完美的圓”,然后用完美的公式去解決問題。因為數(shù)學(xué)就是用來干這個的,數(shù)學(xué)就是數(shù)學(xué),它才不需要管世界上存不存在的問題。
所以你們真的懂為什么義務(wù)教育要強迫人學(xué)數(shù)學(xué)嗎?費那個勁算陰影面積,去證明三角形全等,去解函數(shù)零點,實際上也是在提高人的另類“文化”水平。日常生活買菜算賬用到的那些東西,根本稱不上“數(shù)學(xué)”的,要為了算數(shù)學(xué)數(shù)學(xué),為什么不直接開門課叫“計算器的使用技巧”?。數(shù)學(xué)是個概念,一種思維方法,一種描述性語言。