最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網(wǎng) 會(huì)員登陸 & 注冊(cè)

[Number Theory] Pythagorean Triples

2021-11-19 09:48 作者:AoiSTZ23  | 我要投稿

By: Tao Steven Zheng(鄭濤)

【Problem】

A Pythagorean triple is a set of three positive integers (a%2Cb%2Cc) that satisfies the Pythagorean theorem a%5E2%20%2B%20b%5E2%20%3D%20c%5E2. The earliest table of Pythagorean triples can be found on an ancient Babylonian clay tablet called ''Plimpton 322'' (c. 1800 BC). However, the clay tablet does not indicate any knowledge of the Pythagoean triples formula.

Plimpton 322

Derive the formula for generating primitive Pythagorean triples

(a%2Cb%2Cc)%20%3D%20(2mn%2C%20m%5E2-n%5E2%2C%20m%5E2%2Bn%5E2)

where %5Cgcd(m%2C%20n)%3D1 and %5Cgcd(a%2Cb%2Cc)%3D1.

【Solution】

The Pythagorean theorem states that for a right triangle with sides a%2Cb%2Cc%20, where c is the longest side, a%5E2%20%2B%20b%5E2%20%3D%20c%5E2.

Subtract b%5E2 on both sides and factorize:

a%5E2%20%3D%20c%5E2%20-%20b%5E2

a%5E2%20%3D%20(c%2Bb)(c-b)

Then divide a%5E2 on both sides:

1%20%3D%20%5Cleft(%5Cfrac%7Bc%2Bb%7D%7Ba%7D%5Cright)%5Cleft(%5Cfrac%7Bc-b%7D%7Ba%7D%5Cright)


If %5Cfrac%7Bc-b%7D%7Ba%7D%20 is a rational number, then %20%5Cfrac%7Bc-b%7D%7Ba%7D%20%3D%20%5Cfrac%7Bn%7D%7Bm%7D and %5Cfrac%7Bc%2Bb%7D%7Ba%7D%20%3D%20%5Cfrac%7Bm%7D%7Bn%7D, where %5Cgcd(m%2Cn)%20%3D%201.

Subsequently, %5Cfrac%7Bc%7D%7Ba%7D%20-%20%5Cfrac%7Bb%7D%7Ba%7D%20%3D%20%5Cfrac%7Bn%7D%7Bm%7D and %5Cfrac%7Bc%7D%7Ba%7D%20%2B%20%5Cfrac%7Bb%7D%7Ba%7D%20%3D%20%5Cfrac%7Bm%7D%7Bn%7D.

(1) By adding the two expressions, it can be shown that

2%5Cleft(%5Cfrac%7Bc%7D%7Ba%7D%5Cright)%20%20%3D%20%5Cfrac%7Bm%5E2%20%2B%20n%5E2%7D%7Bmn%7D

%5Cfrac%7Bc%7D%7Ba%7D%20%20%3D%20%5Cfrac%7Bm%5E2%20%2B%20n%5E2%7D%7B2mn%7D

For primitive Pythagorean triples, %5Cgcd(a%2Cc)%20%3D%201; therefore, %20a%20%3D%202mn and c%20%3D%20m%5E2%20%2B%20n%5E2%20.

(2) By subtracting the two expressions, it can be shown that

2%5Cleft(%5Cfrac%7Bb%7D%7Ba%7D%5Cright)%20%20%3D%20%5Cfrac%7Bm%5E2%20-%20n%5E2%7D%7Bmn%7D

%5Cfrac%7Bb%7D%7Ba%7D%20%20%3D%20%5Cfrac%7Bm%5E2%20-%20n%5E2%7D%7B2mn%7D

For primitive Pythagorean triples, %20%5Cgcd(a%2Cb)%20%3D%201; therefore, a%20%3D%202mn and b%20%3D%20m%5E2%20-%20n%5E2.

Therefore, the primitive Pythagorean triples formula is

(a%2Cb%2Cc)%20%3D%20(2mn%2C%20m%5E2-n%5E2%2C%20m%5E2%2Bn%5E2)%20


To generate all Pythagorean triples, one can scale each side by a common factor k that is a positive integer.

(a%2Cb%2Cc)%20%3D%20%5Cleft(2kmn%2C%20k(m%5E2-n%5E2)%2C%20k(m%5E2%2Bn%5E2)%5Cright)



[Number Theory] Pythagorean Triples的評(píng)論 (共 條)

分享到微博請(qǐng)遵守國(guó)家法律
高安市| 苍梧县| 东乌珠穆沁旗| 黑龙江省| 石柱| 巩义市| 宣威市| 定远县| 莒南县| 吐鲁番市| 淮南市| 宜阳县| 芒康县| 正镶白旗| 夏邑县| 包头市| 赤水市| 雷波县| 始兴县| 阳新县| 肇东市| 内江市| 临清市| 武强县| 鲜城| 昌都县| 钟山县| 马关县| 津南区| 武强县| 布拖县| 新邵县| 合肥市| 阜新| 甘泉县| 德惠市| 监利县| 姜堰市| 桂阳县| 梨树县| 阿坝县|