最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網(wǎng) 會員登陸 & 注冊

[Geometry] Archimedes' Triumph

2021-11-27 09:19 作者:AoiSTZ23  | 我要投稿

By: Tao Steven Zheng(鄭濤)

【Problem】

In Volume I of On the ''Sphere and the Cylinder'', Archimedes (c. 287 - 212 BC) determined the volumetric ratio of a sphere to a circumscribed cylinder. The height and width of the cylinder is equal to the diameter of the sphere. What is this ratio?

Archimedes' Sphere in the Cylinder

【Solution】

Let the radius of the sphere be r. The circumscribed cylinder shares the same height and width as the sphere, so?the height of the cylinder is h%20%3D%202r.

The volume of a sphere is %20V_%7Bsphere%7D%20%3D%20%5Cfrac%7B4%5Cpi%20r%5E3%7D%7B3%7D%20, and the volume of a cylinder is V_%7Bcylinder%7D%20%3D%20%5Cpi%20r%5E2%20h. Thus, the volume circumscribed cylinder is

%20V_%7Bcylinder%7D%20%3D%20%5Cpi%20r%5E2%20%5Ctimes%202r

V_%7Bcylinder%7D%20%3D%202%5Cpi%20r%5E3

Therefore, the volumetric ratio of a sphere to its circumscribed cylinder is

V_%7Bsphere%7D%3AV_%7Bcylinder%7D%20%3D%20%5Cfrac%7B4%5Cpi%20r%5E3%7D%7B3%7D%3A2%5Cpi%20r%5E3

which simplifies to

V_%7Bsphere%7D%3AV_%7Bcylinder%7D%20%3D%202%3A3

Archimedes


[Geometry] Archimedes' Triumph的評論 (共 條)

分享到微博請遵守國家法律
临泉县| 芜湖市| 新邵县| 青龙| 宜都市| 石家庄市| 仪陇县| 常宁市| 嵊州市| 静海县| 九江县| 江安县| 鄯善县| 西平县| 贡山| 龙岩市| 苍溪县| 江达县| 广汉市| 墨竹工卡县| 广饶县| 乡宁县| 蓝山县| 阜城县| 孟津县| 武冈市| 商洛市| 靖西县| 灵璧县| 肃宁县| 怀仁县| 体育| 当阳市| 铁岭县| 聂拉木县| 五华县| 鱼台县| 太保市| 华安县| 新龙县| 温州市|