最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網(wǎng) 會員登陸 & 注冊

2023浙江大學(xué)強(qiáng)基數(shù)學(xué)逐題解析(1)

2023-06-18 20:42 作者:CHN_ZCY  | 我要投稿

封面:Date wtih 二乃

作畫:耕太

https://www.pixiv.net/artworks/75459895


  1. 已知%5Calpha,%5Cbeta%5Cin%5Cleft(0%2C%5Cfrac%7B%5Cpi%7D%7B2%7D%5Cright),則

    %5Cfrac%7B%5Cleft(1-%5Csqrt%7B%5Ctan%7B%5Cfrac%7B%5Calpha%7D%7B2%7D%7D%5Ctan%7B%5Cfrac%7B%5Cbeta%7D%7B2%7D%7D%7D%5Cright)%5E2%7D%7B%5Ccot%5Calpha%2B%5Ccot%5Cbeta%7D

    的最大值為___________.

    答案??3-2%5Csqrt%7B2%7D

    解析??

    設(shè)m%3D%5Csqrt%7B%5Ctan%7B%5Cfrac%7B%5Calpha%7D%7B2%7D%7D%7D%5Cin%5Cleft(0%2C1%5Cright),n%3D%5Csqrt%7B%5Ctan%5Cfrac%7B%5Cbeta%7D%7B2%7D%7D%5Cin%5Cleft(0%2C1%5Cright).

    %5Cbegin%7Baligned%7D%0A%26%5Cfrac%7B%5Cleft(1-%5Csqrt%7B%5Ctan%7B%5Cfrac%7B%5Calpha%7D%7B2%7D%7D%5Ctan%7B%5Cfrac%7B%5Cbeta%7D%7B2%7D%7D%7D%5Cright)%5E2%7D%7B%5Ccot%5Calpha%2B%5Ccot%5Cbeta%7D%5C%5C%26%3D%5Cfrac%7B2m%5E2n%5E2%5Cleft(1-mn%5Cright)%7D%7B%5Cleft(m%5E2%2Bn%5E2%5Cright)%5Cleft(1%2Bmn%5Cright)%7D%5C%5C%26%5Cleq%5Cfrac%7Bmn%5Cleft(1-mn%5Cright)%7D%7B1%2Bmn%7D%5C%5C%26%3D3-%5Cleft(1%2Bmn%5Cright)-%5Cfrac%7B2%7D%7B1%2Bmn%7D%5C%5C%26%5Cleq3-2%5Csqrt%7B2%7D%0A%5Cend%7Baligned%7D

    當(dāng)且僅當(dāng)%5Ctan%7B%5Cfrac%7B%5Calpha%7D%7B2%7D%7D%3D%5Ctan%7B%5Cfrac%7B%5Cbeta%7D%7B2%7D%7D%3D%5Csqrt%7B2%7D-1時取等.

    所以%5Cfrac%7B%5Cleft(1-%5Csqrt%7B%5Ctan%7B%5Cfrac%7B%5Calpha%7D%7B2%7D%7D%5Ctan%7B%5Cfrac%7B%5Cbeta%7D%7B2%7D%7D%7D%5Cright)%5E2%7D%7B%5Ccot%5Calpha%2B%5Ccot%5Cbeta%7D的最大值是3-2%5Csqrt%7B2%7D.

  2. %5Cleft%7C%202%5Ex3%5Ey-2%5Eu5%5Ev%20%5Cright%7C%20%3D2的正整數(shù)解%5Cleft(x%2Cy%2Cu%2Cv%5Cright)個數(shù)為

    A. 4

    B. 6

    C. 7

    D. 以上三項(xiàng)均不正確

    答案? A

    解析??

    (1) 若x%3D1,方程化為

    3%5Ey-2%5E%7Bu-1%7D5%5Ev%3D1%E6%88%96-1

    兩邊對5取模,得

    3%5Ey%5Cequiv%201%E6%88%964%5Cpmod%7B5%7D

    (i) 若3%5Ey%5Cequiv%201%5Cpmod%7B5%7D,則y%3D4k%5Cleft(k%20%5Cin%20%5Cmathbb%7BN%7D%5E*%5Cright),3%5E%7B4k%7D-2%5E%7Bu-1%7D5%5Ev%3D1.

    于是

    2%5E%7Bu-1%7D5%5Ev%3D3%5E%7B4k%7D-1%3D80%5Cleft(1%2B81%2B81%5E2%2B%5Ccdots%2B81%5E%7Bk-1%7D%5Cright)

    1%2B81%2B81%5E2%2B%5Ccdots%2B81%5E%7Bk-1%7D%3D2%5E%7Bu-5%7D5%5E%7Bv-1%7D

    由于%5Cforall%20n%5Cin%20%5Cmathbb%7BN%7D%2C81%5En%20%5Cequiv%201%20%5Cpmod5,

    2%5E%7Bu-5%7D5%5E%7Bv-1%7D%3D1%2B81%2B81%5E2%2B%5Ccdots%2B81%5E%7Bk-1%7D%5Cequiv%20k%20%5Cpmod5

    v%5Cgeq2,則5%20%5Cmid%20k,得3%5E5-1%5Cmid3%5E%7B4k%7D-1.

    3%5E5-1%3D242%3D2%5Ccdot11%5E2,2%5E%7Bu-1%7D5%5Ev%3D3%5E%7B4k%7D-1

    從而11%5Cmid2%5E%7Bu-1%7D5%5Ev,這是不可能的,所以v%5Cgeq2不符合題意.

    v%3D1,

    2%5E%7Bu-1%7D%5Ccdot5%3D3%5E%7B4k%7D-1%3D%5Cfrac%7B9%5Ek-1%7D%7B2%7D%5Ccdot%5Cfrac%7B9%5Ek%2B1%7D%7B2%7D

    由于9%5Ek%2B1%5Cequiv2%5Cpmod4,所以%5Cfrac%7B9%5Ek%2B1%7D%7B2%7D是奇數(shù),又因?yàn)槠洳恍∮?,所以

    %5Cfrac%7B9%5Ek%2B1%7D%7B2%7D%3D5,即k%3D1.

    從而%5Cleft(x%2Cy%2Cu%2Cv%5Cright)%3D%5Cleft(1%2C4%2C5%2C1%5Cright).

    (ii) 若3%5Ey%5Cequiv%204%5Cpmod%7B5%7D,則y%3D4k-2%5Cleft(k%5Cin%5Cmathbb%7BN%7D%5E*%5Cright)3%5E%7B4k-2%7D-2%5E%7Bu-1%7D5%5Ev%3D-1.

    兩邊對4取模,得

    1-2%5E%7Bu-1%7D%20%5Cequiv%203%20%5Cpmod%204

    2%5E%7Bu-1%7D%20%5Cequiv%202%20%5Cpmod%204,即u%3D2.

    所以3%5E%7B4k-2%7D-2%5Ccdot5%5Ev%3D-1,即

    2%5Ccdot5%5Ev%3D3%5E%7B4k-2%7D%2B1%3D10%5Cleft%5B1%2B%5Cleft(-9%5Cright)%2B%5Cleft(-9%5Cright)%5E2%2B%5Ccdots%2B%5Cleft(-9%5Cright)%5E%7B2k-2%7D%5Cright%5D

    1%2B%5Cleft(-9%5Cright)%2B%5Cleft(-9%5Cright)%5E2%2B%5Ccdots%2B%5Cleft(-9%5Cright)%5E%7B2k-2%7D%3D5%5E%7Bv-1%7D

    由于%5Cforall%20n%5Cin%20%5Cmathbb%7BN%7D%2C%5Cleft(-9%5Cright)%5En%20%5Cequiv%201%20%5Cpmod5,

    5%5E%7Bv-1%7D%3D1%2B%5Cleft(-9%5Cright)%2B%5Cleft(-9%5Cright)%5E2%2B%5Ccdots%2B%5Cleft(-9%5Cright)%5E%7B2k-2%7D%5Cequiv2k-1%5Cpmod%205

    v%5Cgeq2,則5%20%5Cmid%202k-1,得3%5E5-1%5Cmid3%5E%7B4k-2%7D-1.

    3%5E5-1%3D242%3D2%5Ccdot11%5E2,2%5Ccdot5%5E%7Bv%7D%3D3%5E%7B4k-2%7D-1,

    從而11%5Cmid%202%5Ccdot5%5Ev,這是不可能的.?所以v%5Cgeq2不符合題意.

    v%3D1,得%5Cleft(x%2Cy%2Cu%2Cv%5Cright)%3D%5Cleft(1%2C2%2C2%2C1%5Cright).

    (2) 若x%5Cgeq2,則%5Cleft%7C%202%5E%7Bx-1%7D3%5Ey-2%5E%7Bu-1%7D5%5Ev%5Cright%7C%3D1,所以u%3D1.

    方程化為

    2%5E%7Bx-1%7D3%5Ey-5%5Ev%3D1%E6%88%96-1

    (i) 若x%3D2,方程化為

    2%5Ccdot3%5Ey-5%5Ev%3D1%E6%88%96-1

    2%5Ccdot3%5Ey-5%5Ev%3D-1,即2%5Ccdot3%5Ey%3D5%5Ev-1.

    由于4%5Cmid5%5Ev-1,所以4%5Cmid2%5Ccdot3%5Ey,這是不可能的,所以該情況不符合題意.

    2%5Ccdot3%5Ey-5%5Ev%3D1,兩邊對3取模得-5%5Ev%5Cequiv1%5Cpmod3,即5%5Ev%5Cequiv2%5Cpmod3.

    所以v為奇數(shù).

    于是

    2%5Ccdot3%5Ey%3D5%5Ev%2B1%3D6%5Cleft%5B1%2B%5Cleft(-5%5Cright)%2B%5Cleft(-5%5Cright)%5E2%2B%5Ccdots%2B%5Cleft(-5%5Cright)%5E%7Bv-1%7D%5Cright%5D

    1%2B%5Cleft(-5%5Cright)%2B%5Cleft(-5%5Cright)%5E2%2B%5Ccdots%2B%5Cleft(-5%5Cright)%5E%7Bv-1%7D%3D3%5E%7By-1%7D

    由于%5Cforall%20n%5Cin%20%5Cmathbb%7BN%7D%2C%5Cleft(-5%5Cright)%5En%20%5Cequiv%201%20%5Cpmod3,

    3%5E%7By-1%7D%3D1%2B%5Cleft(-5%5Cright)%2B%5Cleft(-5%5Cright)%5E2%2B%5Ccdots%2B%5Cleft(-5%5Cright)%5E%7Bv-1%7D%5Cequiv%20v%5Cpmod%203

    y%5Cgeq2,則3%5Cmid%20v,得5%5E3%2B1%20%5Cmid%205%5Ev%2B1.

    5%5E3%2B1%3D126%3D2%5Ccdot3%5E2%5Ccdot72%5Ccdot3%5Ey%3D5%5Ev%2B1,

    從而7%5Cmid2%5Ccdot3%5Ey,這是不可能的,所以y%5Cgeq2不符合題意.

    y%3D1,則%5Cleft(x%2Cy%2Cu%2Cv%5Cright)%3D%5Cleft(2%2C1%2C1%2C1%5Cright).

    (ii) 若x%5Cgeq3,則

    2%5E%7Bx-1%7D3%5Ey-5%5Ev%5Cequiv3%5Cpmod4

    所以2%5E%7Bx-1%7D3%5Ey-5%5Ev%3D-1.

    兩邊對3取模得-5%5Ev%5Cequiv2%5Cpmod%203,即5%5Ev%5Cequiv1%5Cpmod%203

    所以v為偶數(shù). 則

    2%5E%7Bx-1%7D3%5Ey%3D5%5Ev-1%3D%5Cfrac%7B5%5E%7B%5Cfrac%7Bv%7D%7B2%7D%7D-1%7D%7B2%7D%5Ccdot%5Cfrac%7B5%5E%7B%5Cfrac%7Bv%7D%7B2%7D%7D%2B1%7D%7B2%7D

    由于%5Cleft(%5Cfrac%7B5%5E%7B%5Cfrac%7Bv%7D%7B2%7D%7D-1%7D%7B2%7D%2C%5Cfrac%7B5%5E%7B%5Cfrac%7Bv%7D%7B2%7D%7D%2B1%7D%7B2%7D%5Cright)%3D1,且%5Cfrac%7B5%5E%7B%5Cfrac%7Bv%7D%7B2%7D%7D%2B1%7D%7B2%7D為奇數(shù),所以

    %5Cfrac%7B5%5E%7B%5Cfrac%7Bv%7D%7B2%7D%7D%2B1%7D%7B2%7D%3D3%5Ey

    2%5Ccdot3%5Ey-5%5E%7B%5Cfrac%7Bv%7D%7B2%7D%7D%3D1

    由(i)知%5Cbegin%7Bcases%7D%0Ay%3D1%5C%5C%0Av%3D2%0A%5Cend%7Bcases%7D,得%5Cleft(x%2Cy%2Cu%2Cv%5Cright)%3D%5Cleft(4%2C1%2C1%2C2%5Cright).

    綜上,

    %5Cleft(x%2Cy%2Cu%2Cv%5Cright)%3D%5Cleft(1%2C4%2C5%2C1%5Cright)%E6%88%96%5Cleft(1%2C2%2C2%2C1%5Cright)%E6%88%96%5Cleft(2%2C1%2C1%2C1%5Cright)%E6%88%96%5Cleft(4%2C1%2C1%2C2%5Cright)

    所以該方程的正整數(shù)解的個數(shù)為4.

    故選:A.







2023浙江大學(xué)強(qiáng)基數(shù)學(xué)逐題解析(1)的評論 (共 條)

分享到微博請遵守國家法律
忻城县| 靖边县| 咸宁市| 盐边县| 石景山区| 于田县| 德昌县| 灵武市| 石城县| 蒙城县| 洛阳市| 剑阁县| 杭州市| 洪江市| 龙里县| 溧阳市| 宾阳县| 茌平县| 肥东县| 岚皋县| 玉环县| 阿克陶县| 青神县| 灌南县| 岑溪市| 永吉县| 佛山市| 漠河县| 沁水县| 桐柏县| 寻乌县| 鹤山市| 酉阳| 中超| 唐河县| 潜山县| 股票| 涞源县| 南澳县| 临沧市| 怀仁县|