最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網 會員登陸 & 注冊

大師一百:初中數學:矩形、菱形、正方形的5大考點及題型匯總

2020-02-19 15:00 作者:物理大師  | 我要投稿



一、矩形、菱形、正方形的性質


1.矩形的性質

①具有平行四邊形的一切性質;

②矩形的四個角都是直角;

③矩形的對角線相等;

④矩形是軸對稱圖形,它有兩條對稱軸;

⑤直角三角形斜邊上的中線等于斜邊的一半。


2.菱形的性質

①具有平行四邊形的一切性質;

②菱形的四條邊都相等;

③菱形的兩條對角線互相垂直,并且每一條對角線平分一組對角;

④菱形是軸對稱圖形,每條對角線所在的直線都是它的對稱軸;

⑤菱形的面積=底×高=對角線乘積的一半。


3.正方形的性質

正方形具有平行四邊形,矩形,菱形的一切性質

①邊:四邊相等,對邊平行;

②角:四個角都是直角;

③對角線:互相平分;相等;且垂直;每一條對角線平分一組對角,即正方形的對角線與邊的夾角為45度;

④正方形是軸對稱圖形,有四條對稱軸。


例1 矩形ABCD中,DE⊥AC于E,且∠ADE:∠EDC=3:2,則∠BDE的度數為??(???)

A.360??? ????B.90?? ????

C.270????????D.180


例2 如圖,矩形ABCD中,AE⊥BD于點E,對角線AC與BD相交于點O,BE:ED=1:3,AB=6cm,求AC的長。???


例3 如圖, O是矩形ABCD 對角線的交點, AE平分?∠BAD,∠AOD=120°?,求∠AEO 的度數。


例4 菱形的周長為40cm,兩鄰角的比為1:2,則較短對角線的長________?。


例5?如圖,在正方形ABCD中,G是BC上任意一點,連接AG,DE⊥AG于E,BF∥DE交AG于F,探究線段AF、BF、EF三者之間的數量關系,并說明理由.



二、矩形、菱形、正方形的判定


1.矩形的判定

①有一個內角是直角的平行四邊形是矩形;

②對角線相等的平行四邊形是矩形;

③有三個角是直角的四邊形是矩形;

④還有對角線相等且互相平分的四邊形是矩形。


2.菱形的判定方法

①有一組鄰邊相等的平行四邊形是菱形;

②對角線互相垂直的平行四邊形是菱形;

③四條邊都相等四邊形是菱形;

④對角線垂直平分的四邊形是菱形。


3.正方形的判定

①菱形+矩形的一條特征;

②菱形+矩形的一條特征;

③平行四邊形+一個直角+一組鄰邊相等。


說明一個四邊形是正方形的一般思路是:先判斷它是矩形,在判斷這個矩形也是菱形;或先判斷它是菱形,再判斷這個菱形也是矩形。


例1. 如圖,在△ABC中,AB=AC,點D是邊BC的中點,過點A、D分別作BC與AB的平行線,并交于點E,連續(xù)EC、AD。

求證:四邊形ADCE是矩形。? ? ? ? ?


例2.如圖,△ABC中,∠C=90°,AD平分∠BAC,ED⊥BC,DF//AB.?


求證:AD與EF互相垂直平分。? ? ? ? ? ? ? ?


例3.已知如圖,在△ABC,∠ACB=900,AD是角平分線,點E、F分別在AB、AD上,且AE=AC,EF∥BC。


求證:四邊形CDEF是菱形。 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?



三、矩形、菱形、正方形與函數綜合題


1.利用矩形、菱形、正方形的知識解決函數問題;

2.利用函數知識解決矩形、菱形、正方形的問題;


例1.如圖,在平面直角坐標系中,菱形ABCD的頂點C與原點O重合,點B在y軸的正半軸上,點A在反比例函數y=(k>0,x>0)的圖象上,點D的坐標為(4,3).


(1)求k的值;

(2)若將菱形ABCD沿x軸正方向平移,當菱形的頂點D落在函數y=(k>0,x>0)的圖象上時,求菱形ABCD沿x軸正方向平移的距離。


例2.如圖,點B、C分別在兩條直線y=2x和y=kx上,點A、D是x軸上兩點,已知四邊形ABCD是正方形,則k值為______.?


例3 已知點A、B分別是x軸、y軸上的動點,點C、D是某個函數圖象上的點,當四邊形ABCD(A、B、C、D各點依次排列)為正方形時,稱這個正方形為此函數圖象的伴侶正方形.例如:如圖,正方形ABCD是一次函數y=x+1圖象的其中一個伴侶正方形.


(1)若某函數是一次函數y=x+1,求它的圖象的所有伴侶正方形的邊長;

(2)若某函數是反比例函數,它的圖象的伴侶正方形為ABCD,點D(2,m)(m<2)在反比例函數圖象上,求m的值及反比例函數解析式。???????????????



四、矩形、正方形的翻折


1.從翻折中找出對稱軸,利用對稱性找相等關系。

2.利用相等關系建立方程解決問題。


例1?如圖,矩形ABCD中,E是AD的中點,將△ABE沿直線BE折疊后得到△GBE,延長BG交CD于點F.若CF=1,FD=2,則BC的長是( ? )

?A.3√6 ? B.2√6???

C.2√5?? D.2√3


例2 如圖,在矩形ABCD中,AB=5,BC=7,點E為BC上一動點,把△ABE沿AE折疊,當點B的對應點B′落在∠ADC的角平分線上時,則點B′到BC的距離為( ?。?/p>

A.1或2? B. 2或3 ??

C.3或4 ? D. 4或5???????????????????


例3 如圖,在邊長為1的正方形ABCD中,E為AD邊上一點,連接BE,將△ABE沿BE對折,A點恰好落在對角線BD上的點F處。延長AF,與CD邊交于點G,延長FE,與BA的延長線交于點H,則下列說法:①△BFH為等腰直角三角形;②△ADF≌△FHA;?③∠DFG=60°;④DE=2-√2;⑤S△AEF=S△DFG.其中正確的說法有(?。?

A.1個  B.2個  

C.3個 D.4個


例4 四邊形ABCD是正方形,∠MAN=45°,它的兩邊AM、AN分別交CB、DC與點M、N,連接MN,作AH⊥MN,垂足為點H。


(1)如圖1,猜想AH與AB有什么數量關系?并證明。

(2)如圖2,已知∠BAC=45°,AD⊥BC于點D,且BD=2,CD=3,求AD的長。


五、綜合運用


1.計算。利用矩形、菱形、正方形中的等腰三角形和直角三角形進行計算。


2.證明。利用矩形、菱形、正方形的性質和判定,結合全等三角形、等腰三角形、等邊三角形的知識展開證明。


3.探究。利用矩形、菱形、正方形等知識展開探究。


例1?在數學興趣小組活動中,小明進行數學探究活動,將邊長為2的正方形ABCD與邊長為2的正方形AEFG按圖1位置放置,AD與AE在同一直線上,AB與AG在同一直線上.


(1)小明發(fā)現DG⊥BE,請你幫他說明理由.

(2)如圖2,小明將正方形ABCD繞點A逆時針旋轉,當點B恰好落在線段DG上時,請你幫他求出此時BE的長.

(3)如圖3,小明將正方形ABCD繞點A繼續(xù)逆時針旋轉,線段DG與線段BE將相交,交點為H,寫出△GHE與△BHD面積之和的最大值,并簡要說明理由。?


例2?現有兩個具有一個公共頂點的等腰直角三角形△ADE和△ABC,其中∠ACB和∠AED=90°,且AC=BC,AE=DE,CF⊥AB于F,M為線段BD中點,連接CM,EM.


(1)如圖1,當A、B、D在同一條直線上時,若AC=1,AE=2,求FM的長度;


(2)如圖1,當A、B、D在同一條直線上時,求證:CM=EM;


(3)如圖2,當A、B、D在同一條直線上時,請?zhí)骄緾M,EM的數量關系和位置關系,請先給出結論,然后證明。



數學大師

如果對你有幫助,歡迎多多三連哦~?


大師一百:初中數學:矩形、菱形、正方形的5大考點及題型匯總的評論 (共 條)

分享到微博請遵守國家法律
新源县| 阳春市| 九龙坡区| 达州市| 聂荣县| 曲松县| 柏乡县| 晋江市| 随州市| 九江市| 巩义市| 怀化市| 鄂州市| 宁阳县| 淄博市| 宜丰县| 怀远县| 白山市| 木兰县| 林口县| 秦皇岛市| 苗栗县| 咸宁市| 西盟| 平南县| 东乌| 三门县| 瑞丽市| 平邑县| 策勒县| 福建省| 呈贡县| 镇坪县| 平安县| 礼泉县| 察雅县| 错那县| 司法| 本溪| 土默特左旗| 壤塘县|