最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網(wǎng) 會員登陸 & 注冊

I.13補記:根據(jù)純幾何結(jié)論推導(dǎo)橢圓方程

2022-11-02 22:11 作者:DrSlimeBall  | 我要投稿
{"ops":[{"insert":"首先擺出命題13的結(jié)論,即對任意一個橢圓,設(shè)其長軸上的兩個頂點為A,B。于其長軸上取一點M,過M作半弦ML交橢圓于L,交長軸于M,設(shè)LM=f,AB=2a,AM(由于對稱這里設(shè)BM也可以)=t,則有下式成立:\n2af2=pt(2a-t)\ntips:這里的p是一個常數(shù),命題13證明過程中有講到,后面也會推出求p的方法\n有了這個結(jié)論后我們以橢圓中心為坐標(biāo)原點按照教科書傳統(tǒng)方法建系\n設(shè)橢圓上任意點P坐標(biāo)為(x,y)\n首先容易得到f2=y2,然后可以寫出\nt=|AM|=x+a,2a-t=|MB|=x-a\n帶入可得 2ay2=p(x2-a2),再把2a除過去\ny2=(p/2a)(x2-a2),就得到了這樣一個橢圓方程方程\n接下來至于這個方程和平常見到的橢圓方程的關(guān)系其實就有很多種方法推導(dǎo)了,比如我們知道橢圓第三定義的那個方程是\ny2=(b2/a2)(x2-a2),等量代換,有\(zhòng)n(p/2a)(x2-a2)=(b2/a2)(x2-a2)\n由此推出p/2a=b2/a2\n然后就可以得出一些結(jié)論:\np=2b2/a,p/2a=1-e2\n或者將那個式子繼續(xù)變形,變成下面這個樣子:\nx2/a2+2y2/ap=1,再根據(jù)標(biāo)準方程,得出pa=2b2\n也可以得到上面的結(jié)論\n\n補充:原書中的p是通過設(shè)p滿足BK·KC/AK2=p/2a來設(shè)出p這個常數(shù)的,這里我們就又可以推出\nBK·KC/AK2=1-e2,現(xiàn)在關(guān)注左邊的式子,其中A,B,C三點都是圓錐軸三角形(不嚴謹?shù)恼f軸三角形即圓錐軸截面的那個三角形)的三個頂點,而K點的構(gòu)造則與構(gòu)造圓錐曲線的面(也就是拿來去截圓錐的那個面)的傾斜程度有關(guān)。\n也就是說圓錐曲線所在平面與圓錐底面的二面角α決定著1-e2,這也就揭示了對于一個圓錐曲線其離心率e與其α的關(guān)系\n下面是附圖(命題13的圖,和本文關(guān)系不算太大):\n"},{"attributes":{"class":"normal-img"},"insert":{"native-image":{"alt":"read-normal-img","url":"https://b1.sanwen.net/b_article/c167d8d8a932b4b01848445249094acbc8a69419.jpg","width":1490,"height":1484,"size":1211080,"status":"loaded"}}},{"insert":"\n"}]}

I.13補記:根據(jù)純幾何結(jié)論推導(dǎo)橢圓方程的評論 (共 條)

分享到微博請遵守國家法律
汽车| 巴东县| 沂源县| 潍坊市| 容城县| 伽师县| 莎车县| 沁阳市| 荣昌县| 衡阳市| 宿迁市| 定边县| 中宁县| 政和县| 介休市| 临沧市| 屯留县| 八宿县| 德化县| 南雄市| 洞头县| 武冈市| 吉林省| 南召县| 新竹市| 合水县| 开封县| 平凉市| 鄂州市| 崇明县| 芦溪县| 兴业县| 平罗县| 金川县| 东源县| 鄂伦春自治旗| 凌云县| 康马县| 仁化县| 怀集县| 新余市|