小果帶你用GSEA算法鑒定免疫相關的LncRNA
爾云間? 一個專門做科研的團隊
歡迎點贊+收藏+關注

長鏈非編碼RNA(Long non-coding RNA,lncRNA)是長度大于200個核苷酸的非編碼RNA,lncRNA可以通過多種方式調(diào)節(jié)免疫細胞的生長、分化、增值、凋亡等生物學過程,從而影響免疫細胞的功能。目前,已經(jīng)有 很多研究表明,免疫相關的;lncRNA在腫瘤、自身免疫性疾病、感染性 疾病等方面發(fā)揮著重要作用。
GSEA(Gene Set Enrichment Analysis)算法是一種用于富集分析的方法,用于分析基因表達譜數(shù)據(jù)中的生物學通路、代謝通路或表觀遺傳學等基因集的富集情況,以揭示與不同生物學過程相關的基因集的功能特征。在研究免疫相關的LncRNA時,可以使用GSEA算法來分析差異表達的LncRNA基因集是否富集在免疫相關的基因集中。
和小果一起來看看小工具如何使用吧:
【應用場景】
對lncRNA做功能注釋,也可以用于甲基化數(shù)據(jù)等。
雙坐標軸圖通常用來對比展示數(shù)據(jù)之間的變化趨勢相關關系:
散點圖?+ 線性回歸,展示3組數(shù)據(jù)的相關性
柱形圖?+ 折線圖,像本篇例文這樣,一個是數(shù)量,另一個是比例。
【上傳數(shù)據(jù)】
Lnc_input.csv(A列表示不同類型的癌癥,B與免疫相關的lncRNA的數(shù)量,C列表示所有的lncRNA的數(shù)量,D列表示所占比例)

?
【輸出結(jié)果】ImmuLncRNA.pdf
該圖展示了不同類型癌癥中與 免疫相關的lncRNA的數(shù)量及所占比例。

?
今天的介紹就到這里啦,請持續(xù)關注小果,我們下期見~
GSEA算法鑒定免疫相關的lncRNA:www.biocloudservice.com/384/384.php
其他分析:云生信 ?- 學生物信息學 (biocloudservice.com)-
生信人R語言學習必備
立刻擁有一個Rstudio賬號
開啟升級模式吧
(56線程,256G內(nèi)存,個人存儲1T)
往期代碼:
【1】lncRNA的拷貝數(shù)變異下游相關分析
【2】R可視化:ggstatsplot包—科研界的美圖秀秀
【3】隨機森林算法用于分類預測和篩選診斷標志物
【4】基于本地Java版GSEA的輸出結(jié)果整合多個通路到一張圖
【5】基于嶺回歸模型和基因表達矩陣估算樣本對藥物反應的敏感性
【6】基于R包NMF對樣本進行分型分析
【7】DALEX包用于探索、解釋和評估模型;分析不同特征變量對響應變量的影響
【8】根據(jù)腫瘤突變負荷TMB進行KM生存分析尋找最佳的cutoff
【9】基于單樣本富集分析算法評估組織中的免疫細胞浸潤水平
【10】代碼分享│什么?你還在用散點圖來可視化數(shù)據(jù)之間的相關性
【11】代碼分享│診斷列線圖、校準曲線、決策曲線和臨床影響曲線的構(gòu)建
【12】代碼分享│你了解基因的動態(tài)變化模式嗎
【13】代碼分享│生物信息分析之SCI熱門圖表-復雜熱圖
【14】代碼分享│生物信息分析之SCI熱門圖表-火山圖
【15】代碼分享│生物信息分析之SCI熱門圖表-箱型圖和小提琴圖
【16】代碼分享│深度學習-人工神經(jīng)網(wǎng)絡(ANN)的構(gòu)建
【17】代碼分享│R可視化:高分文章繪圖之基于RCircos包的多類型圈圖繪制
【18】代碼分享│R可視化:基因與功能之間的關系--GO功能富集網(wǎng)絡圖繪制
【19】代碼分享│生物信息分析之SCI熱門圖表—KM曲線和tROC曲線
【20】代碼分享│R可視化:腫瘤預后模型之Cox回歸分析后用R語言繪制森林圖
【21】代碼分享│生物信息分析之SCI熱門圖表—相關性熱圖和散點圖
【22】代碼分享│生信分析之R語言分析相關性及可視化的N種風格
【23】代碼分享│TCGA數(shù)據(jù)獲取有困難,不會預處理,學習起來
【24】代碼分享│機器學習-支持向量機遞歸特征消除(SVM-RFE)的構(gòu)建
【25】代碼分享│R可視化:對兩個矩陣進行相關性可視化分析
【26】GEO數(shù)據(jù)庫多數(shù)據(jù)集差異分析整合利器RRA,再也不用糾結(jié)去除批次效應
【27】你與生信大佬的距離,只差2分鐘搞定預后模型構(gòu)建和性能評估
【28】9+SCI純生信,模型構(gòu)建中的“流量明星”,你不得不知的LASSO
【29】手把手教你畫美觀大氣的lasso回歸模型圖,為你的SCI增磚添瓦
【30】R可視化:clusterProfiler包做組間比較GO富集圖
【31】代碼分享|R可視化:復雜熱圖繪制技巧之熱圖中添加柱狀圖
【32】代碼分享——基于基因突變信息分析腫瘤突變負荷
【33】代碼分享│富集不到想要的通路?別放棄呀,試試GSEA
【34】代碼分享│還在用PCA做降維聚類嗎?最強降維模型tSNE--你值得擁有
【35】代碼分享│GSVA:原來功能通路也能做差異分析!
【36】代碼分享│Slingshot:你不知道的單細胞擬時序分析還有它
【37】基于基因功能注釋信息挖掘關鍵作用基因
【38】基于癌癥分類預測的標志物特征提取的SVM-RFE分析代碼
【39】依據(jù)表型數(shù)據(jù)基于無監(jiān)督聚類算法對研究群體進行分層聚類分析
【40】基于穩(wěn)健排序整合算法對多數(shù)據(jù)集進行整合及可視化
【41】基于基因表達譜估算樣本免疫基質(zhì)評分和腫瘤純度
【42】自動化繪制LASSO算法回歸模型圖
【43】用于臨床診斷和臨床決策影響的DCA分析
【44】基于樣本預后生存信息和臨床因素用于評價不同模型的一致性指數(shù)軟件
【45】用于探索、解釋和評估模型的DALEX殘差分析軟件
【46】基于細菌群落功能豐度結(jié)果進行差異功能分析及可視化
【47】基于基因差異分析結(jié)果繪制其在染色體上的分布
【48】利用逐步回歸法篩選特征基因構(gòu)建Cox風險模型分析
【49】基于Immune Subtype Classifier進行腫瘤免疫亞型分類
【50】不同物種之間的同源基因名稱轉(zhuǎn)換分析
【51】基于逐步多因素cox回歸篩選預后標記基因并構(gòu)建風險評分模型
【52】基于表達信息挖掘與關注基因密切相關的基因
【53】基因組學基因名稱修正分析
【54】基于Spearman算法構(gòu)建關聯(lián)網(wǎng)絡
【55】基于線性建模方法對代謝組和轉(zhuǎn)錄組數(shù)據(jù)整合分析
【56】基于lasso回歸模型方法篩選特征基因
【57】基于線性建模方法對代謝組和轉(zhuǎn)錄組數(shù)據(jù)整合分析
【58】基于參數(shù)型經(jīng)驗貝葉斯算法和支持向量機(SVM)篩選疾病亞型特征基因
【59】基于LDA(線性判別分析)算法的微生物biomarker的篩選
【60】基于R包xCell計算64種免疫細胞相對含量及下游可視化
【61】基于甲基化數(shù)據(jù)評估腫瘤純度及下游可視化
【62】基于DiffCorr包識別不同表型下的差異共表達關系對
【63】基于逆累計分布函數(shù)識別顯著偏差通路
【64】基于差異基因?qū)ν返挠绊懲诰蜿P鍵通路
【65】基于高通量數(shù)據(jù)的樣本相似性分析
需要服務器或以上代碼私信小果哦!

“生信果”,生信入門、R語言、生信圖解讀與繪制、軟件操作、代碼復現(xiàn)、生信硬核知識技能、服務器、生物信息學的教程,以及基于R的分析和可視化等原創(chuàng)內(nèi)容,一起見證小白和大佬的成長。