【文獻(xiàn)速遞】【Nature】【2022年】【9月】

聲明:本專欄主要對(duì)生命科學(xué)領(lǐng)域的一些期刊文章標(biāo)題進(jìn)行翻譯,所有內(nèi)容均由本人手工整理翻譯。由于本人專業(yè)為生物分析相關(guān),其他領(lǐng)域如果出現(xiàn)翻譯錯(cuò)誤請(qǐng)諒解。
? ? ? ? ? ? ? ? ? ?


The cover shows the open lava lake of Mount Nyiragongo in the Democratic Republic of the Congo before its catastrophic drainage. The run-up to a volcanic eruption is usually characterized by geophysical and geochemical signals, which can form the basis of an early-warning system. However, as Delphine Smittarello and her colleagues discuss in this week’s issue, that was not the case for last year’s eruption of Nyiragongo. Fissures opened up in the flank of the volcano on 22 May 2021 at the start of a six-hour eruption that began with virtually no warning. Confounding standard theories of how eruptions start, Nyiragongo went on to experience seismic activity for days after, rather than before, the eruption. Modelling by the researchers suggests that the eruption was driven by a rupture in the volcano’s edifice, which subsequently caused a magma intrusion through a 25-km long dyke some 500 metres below the ground. The dyke progression was responsible for the main felt seismic activity. The team notes that forecasting such events is exceptionally hard, suggesting that greater emphasis should be placed on subtle precursory signals and advance preparation for such hazards.
封面展示的是剛果民主共和國(guó)尼拉貢戈火山發(fā)生災(zāi)難性排水前的開(kāi)闊熔巖湖?;鹕奖l(fā)前通常以地球物理和地球化學(xué)信號(hào)為特征,這些信號(hào)可以構(gòu)成預(yù)警系統(tǒng)的基礎(chǔ)。然而,正如Delphine Smittarello和她的同事在本周一期中討論的那樣,去年尼拉貢戈火山噴發(fā)的情況并非如此。2021 年 5 月 22 日,在幾乎沒(méi)有任何警告的情況下開(kāi)始持續(xù)6 小時(shí)的噴發(fā),火山的側(cè)面出現(xiàn)了裂縫。不同于關(guān)于噴發(fā)如何開(kāi)始的標(biāo)準(zhǔn)理論,尼拉貢戈火山在噴發(fā)之后而不是之前經(jīng)歷了數(shù)天的地震活動(dòng)。研究人員的模型表明,這次噴發(fā)是由火山錐的破裂引起的,隨后導(dǎo)致巖漿侵入地下約500米處25公里長(zhǎng)的堤壩。堤壩的推進(jìn)是主要有感地震活動(dòng)的原因。該團(tuán)隊(duì)指出,預(yù)測(cè)此類事件異常困難,這表明應(yīng)更加重視微妙的先兆信號(hào)并提前為此類危險(xiǎn)做好準(zhǔn)備。

The cover shows an artist’s impression of Mbiresaurus raathi, a newly discovered species of herbivorous dinosaur found in Zimbabwe and dating to around 230 million years ago. The remains of the sauropodomorph were part of a collection of fossils from the Late Triassic that contains Africa’s oldest known dinosaurs. Discovered by Christopher Griffin and colleagues along with palaeontologists at the Natural History Museum of Zimbabwe, these fossils are discussed in this week’s issue. The researchers note that the remains correlate with those of similar vertebrates found in the same latitude band in South America and India, suggesting that the distribution of the dinosaurs correlated with climatic barriers. The team notes that this agrees with the idea of arid and humid climate belts running east–west across the supercontinent Pangaea, indicating that the range of these early dinosaurs was constrained to southern Pangaea until those climatic barriers relaxed.
封面展示了一位藝術(shù)家對(duì)姆比雷龍的印象,這是一種在津巴布韋新發(fā)現(xiàn)的食草恐龍物種,可追溯到大約2.3億年前。蜥腳類恐龍的遺骸是三疊紀(jì)晚期化石的一部分,其中包含非洲已知最古老的恐龍。Christopher Griffin及其同事與津巴布韋自然歷史博物館的古生物學(xué)家發(fā)現(xiàn)了這些化石,本周一期將討論這些化石。研究人員指出,這些遺骸與在南美洲和印度同一緯度帶發(fā)現(xiàn)的類似脊椎動(dòng)物的遺骸相關(guān),這表明恐龍的分布與氣候障礙相關(guān)。該團(tuán)隊(duì)指出,這與干旱和潮濕氣候帶東西向橫跨盤古大陸的想法一致,表明這些早期恐龍的活動(dòng)范圍僅限于盤古大陸南部,直到這些氣候障礙放松。

The cover shows melting sea ice in the Arctic during August 2018 photographed from the Alfred Wegener Institute’s airborne sea-ice survey IceBird. Climate change is diminishing Arctic sea ice at rate unseen for some 1,000 years. But mapping sea-ice thickness during the crucial melt period from May to September has not readily been possible. In this week’s issue, Jack Landy and his colleagues provide estimates of Arctic sea-ice thickness for the whole year. The researchers used deep learning and numerical simulations of observations collected by the ESA CryoSat-2 satellite to generate their data set for the melt period, verifying them with IceBird’s airborne measurements. The team hopes the year-round record for sea-ice thickness will enable better understanding of climate feedbacks in the Arctic.
封面展示了2018年8月北極融化的海冰,由阿爾弗雷德韋格納研究所的機(jī)載海冰調(diào)查IceBird拍攝。氣候變化正在以大約1000年來(lái)未見(jiàn)的速度減少北極海冰。但在5月至9月的關(guān)鍵融化期測(cè)繪海冰厚度并非易事。在本周的期刊中,Jack Landy和他的同事們提供了全年北極海冰厚度的估計(jì)值。研究人員使用深度學(xué)習(xí)和歐空局CryoSat-2衛(wèi)星收集的觀測(cè)值的數(shù)值模擬來(lái)生成融化期的數(shù)據(jù)集,并通過(guò)IceBird的機(jī)載測(cè)量對(duì)其進(jìn)行驗(yàn)證。該團(tuán)隊(duì)希望海冰厚度的全年記錄能夠更好地了解北極的氣候反饋。

Ground-based robots have potential for helping in the construction industry, but they are limited by their height. In this week’s issue, Mirko Kovac, Robert Stuart-Smith and their colleagues introduce highly manoeuvrable aerial robots that can perform additive 3D construction tasks. Inspired by natural builders such as wasps and bees, the researchers created BuilDrones (as shown on the cover) that can work in an autonomous team to perform 3D printing tasks using foam- or cement-based materials. They also created ScanDrones to assess the quality of the structures being built. The team hopes that this approach of ‘a(chǎn)erial additive manufacturing’ could help to build structures in difficult to access areas.
地面機(jī)器人有可能在建筑行業(yè)提供幫助,但它們受到高度的限制。在本周的期刊中,Mirko Kovac、Robert Stuart-Smith和他們的同事介紹了高度機(jī)動(dòng)的空中機(jī)器人,它們可以執(zhí)行附加3D構(gòu)建任務(wù)。受到黃蜂和蜜蜂等自然建造者的啟發(fā),研究人員創(chuàng)造了BuilDrones(如封面所示),它可以在一個(gè)自主團(tuán)隊(duì)中工作,使用泡沫或水泥基材料執(zhí)行3D打印任務(wù)。他們還創(chuàng)建了ScanDrones來(lái)評(píng)估正在建造的結(jié)構(gòu)的質(zhì)量。該團(tuán)隊(duì)希望這種“空中增材制造”方法可以幫助在難以進(jìn)入的區(qū)域建造結(jié)構(gòu)。

The cover shows an artist’s reconstruction of (from top to bottom) Shenacanthus vermiformis, Fanjingshania renovata, Qianodus duplicis, Tujiaaspis vividus and Xiushanosteus mirabilis, five newly discovered species of ancient fish from the Silurian Period. Fossil remains of these fish are among those found in two well-preserved beds in southern China dating to 436 million to 439 million years ago. The fossil beds were uncovered by Min Zhu and his colleagues, who discuss the remains they contained across four papers in this week’s issue. The exceptional preservation of the fossils has allowed the researchers to shed light on the difficult problem of how jawed animals evolved and diversified. Among the finds are the oldest known teeth from any jawed vertebrate — from Qianodus, a previously unknown shark relative. Together, the findings paint a fresh picture of diversity among jawed animals of the early Silurian.
封面展示了一位藝術(shù)家對(duì)(從上到下)Shenacanthus vermiformis、Fanjingshania renovata、Qianodus duplicis、Tujiamaspis vividus 和Xiushansteus mirabilis的重建,這五種新發(fā)現(xiàn)的志留紀(jì)古魚。這些魚的化石殘骸是在中國(guó)南方兩個(gè)保存完好的床層中發(fā)現(xiàn)的,距今4.36億至4.39億年前?;彩怯蒑in Zhu和他的同事發(fā)現(xiàn)的,他們?cè)诒局芤黄诘乃钠撐闹杏懻摿嘶仓械倪z跡?;奶厥獗4媸寡芯咳藛T能夠闡明有頜動(dòng)物如何進(jìn)化和多樣化的難題。這些發(fā)現(xiàn)包括已知最古老的有頜脊椎動(dòng)物牙齒——來(lái)自以前不為人知的鯊魚親戚Qianodus??傊?,這些發(fā)現(xiàn)描繪了早期志留紀(jì)有顎動(dòng)物多樣性的新圖景。
1.Standing up for the earliest bipedal hominins.
站起來(lái)最早的兩足動(dòng)物。
2.From the archive: pollution link to mental health, and museum envy.
來(lái)自檔案:與心理健康的污染聯(lián)系,博物館嫉妒。
3.A phase transition for chromosome transmission when cells divide.
細(xì)胞分裂時(shí)染色體傳遞的相變。
4.The search for eruption signals in volcanic noise.
在火山噪聲中尋找噴發(fā)信號(hào)。
5.Mixed dimensionality weaves exotic behaviour into superlattices.
混合維度將奇怪行為編織成超晶格。
6.Immune cells use hunger hormones to aid healing.
免疫細(xì)胞使用饑餓激素來(lái)幫助愈合。
7.Revealing the short-range structure of the mirror nuclei 3H and 3He.
揭示了鏡核3H和3HE的短距離結(jié)構(gòu)。
8.Heterodimensional superlattice with in-plane anomalous Hall effect.
具有平面異?;魻栃?yīng)的異二維超晶格。
9.Intralayer charge-transfer moiré excitons in van der Waals superlattices.
范德華超級(jí)晶格中的內(nèi)部電荷轉(zhuǎn)移莫伊爾激子。
10.Aligned macrocycle pores in ultrathin films for accurate molecular sieving.
超薄膜中的大環(huán)孔排列,以精確的分子篩分。
11.Emergence of mesoscale quantum phase transitions in a ferromagnet.
鐵磁體中的中尺度量子相變的出現(xiàn)。
12.Tandem electrocatalytic N2 fixation via proton-coupled electron transfer.
通過(guò)質(zhì)子耦合電子轉(zhuǎn)移串聯(lián)電催化N2固定。
13.Enhanced ocean oxygenation during Cenozoic warm periods.
在新生代溫暖時(shí)期增強(qiáng)海洋氧合。
14.Precursor-free eruption triggered by edifice rupture at Nyiragongo volcano.
Nyiragongo火山的錐破裂觸發(fā)的無(wú)前體噴發(fā)。
15.When and where to protect forests.
何時(shí)何地保護(hù)森林。
16.Postcranial evidence of late Miocene hominin bipedalism in Chad.
Chad晚期中新世人類雙足行走的顱后證據(jù)。
17.Wastewater sequencing reveals early cryptic SARS-CoV-2 variant transmission.
廢水測(cè)序揭示了早期神秘的SARS-CoV-2變體傳播。
18.Brain–phenotype models fail for individuals who defy sample stereotypes.
對(duì)于那些反對(duì)樣本刻板印象的個(gè)體的人,腦-表型模型都會(huì)失敗。
19.Natural switches in behaviour rapidly modulate hippocampal coding.
行為中的自然切換迅速調(diào)節(jié)海馬編碼。
20.Endocytosis in the axon initial segment maintains neuronal polarity.
軸突初始段中的內(nèi)吞作用保持神經(jīng)元極性。
21.Spatial profiling of early primate gastrulation in utero.
子宮早期靈長(zhǎng)類動(dòng)物胃腸道的空間分析。
22.Bacterial retrons encode phage-defending tripartite toxin–antitoxin systems.
細(xì)菌逆編碼噬菌體防御的三方毒素-抗毒素系統(tǒng)。
23.Post-translational control of beige fat biogenesis by PRDM16 stabilization.
PRDM16穩(wěn)定對(duì)米色脂肪生物合成的翻譯后控制。
24.ZBTB46 defines and regulates ILC3s that protect the intestine.
ZBTB46定義并調(diào)節(jié)保護(hù)腸道的ILC3。
25.A monocyte–leptin–angiogenesis pathway critical for repair post-infection.
單核細(xì)胞-副素-血管生成途徑對(duì)于感染后修復(fù)至關(guān)重要。
26.RASA2 ablation in T cells boosts antigen sensitivity and long-term function.
T細(xì)胞中的RASA2消融增強(qiáng)了抗原敏感性和長(zhǎng)期功能。
27.A mitotic chromatin phase transition prevents perforation by microtubules.
有絲分裂染色質(zhì)相位過(guò)渡可防止微管穿孔。
28.R-loop formation and conformational activation mechanisms of Cas9.
Cas9的R環(huán)形成和構(gòu)象激活機(jī)制。
29.Discovery, structure and mechanism of a tetraether lipid synthase.
四脂脂合酶的發(fā)現(xiàn),結(jié)構(gòu)和機(jī)制。
30.Microgravity makes fully mobile droplets measurable.
微重力使完全移動(dòng)的液滴可測(cè)量。
31.Structural keys unlock RAS–MAPK cellular signalling pathway.
結(jié)構(gòu)鍵解鎖RAS-MAPK細(xì)胞信號(hào)通路。
32.How red pigments are produced in fish and fowl.
魚類和禽類中如何產(chǎn)生紅色顏料。
33.Declining crop yields limit the potential of bioenergy.
農(nóng)作物產(chǎn)量下降限制了生物能源的潛力。
34.From the archive: school physics, and Shakespeare’s cause of death.
來(lái)自檔案:學(xué)校物理學(xué)和莎士比亞的死因。
35.A ‘replace me’ signal from dying brown fat fires up weight loss.
垂死的棕色脂肪因“替換我”的信號(hào)會(huì)激發(fā)減肥。
36.Synergistic active sites observed in a solid catalyst.
在固體催化劑中觀察到的協(xié)同活性位點(diǎn)。
37.Capillary forces generated by biomolecular condensates.
生物分子冷凝物產(chǎn)生的毛細(xì)作用。
38.Rapid quasi-periodic oscillations in the relativistic jet of BL Lacertae.
BL Lacertae的相對(duì)論射流中的快速準(zhǔn)周期振蕩。
39.A sustained high-temperature fusion plasma regime facilitated by fast ions.
快速離子促進(jìn)了持續(xù)的高溫融合等離子體狀態(tài)。
40.Imaging hydrodynamic electrons flowing without Landauer–Sharvin resistance.
成像流體動(dòng)力電子流動(dòng),不具有Landauer-Sharvin電阻。
41.Exciton-coupled coherent magnons in a 2D semiconductor.
2D半導(dǎo)體中的激子耦合相干磁子。
42.Bifunctional hydroformylation on heterogeneous Rh-WOx pair site catalysts.
異質(zhì)Rh-WOx對(duì)位點(diǎn)催化劑上的雙功能氫甲基化。
43.Intrinsically unidirectional chemically fuelled rotary molecular motors.
本質(zhì)上的單向化學(xué)燃料旋轉(zhuǎn)分子電動(dòng)機(jī)。
44.Delayed use of bioenergy crops might threaten climate and food security.
延遲使用生物能源可能會(huì)威脅氣候和糧食安全。
45.Chiral monoterpenes reveal forest emission mechanisms and drought responses.
手性單二烯揭示了森林排放機(jī)制和干旱反應(yīng)。
46.Africa’s oldest dinosaurs reveal early suppression of dinosaur distribution.
非洲最古老的恐龍揭示了早期抑制恐龍分布。
47.A brainstem map for visceral sensations.
內(nèi)臟感覺(jué)的腦干圖。
48.Fos ensembles encode and shape stable spatial maps in the hippocampus.
Fos整合在海馬中編碼和形狀穩(wěn)定的空間圖。
49.Archaic chaperone–usher pili self-secrete into superelastic zigzag springs.
古老的伴侶-將菌毛自分泌到超彈性之字形彈簧中。
50.A microbial supply chain for production of the anti-cancer drug vinblastine.
一種用于生產(chǎn)抗癌藥物葡萄蛋白的微生物供應(yīng)鏈。
51.LACC1 bridges NOS2 and polyamine metabolism in inflammatory macrophages.
LACC1在炎癥性巨噬細(xì)胞中橋接NOS2和多胺代謝。
52.MYB orchestrates T cell exhaustion and response to checkpoint inhibition.
MYB編排了T細(xì)胞耗盡和對(duì)檢查點(diǎn)抑制的反應(yīng)。
53.Apoptotic brown adipocytes enhance energy expenditure via extracellular inosine.
凋亡的棕色脂肪細(xì)胞通過(guò)細(xì)胞外肌苷增強(qiáng)能量消耗。
54.Non-viral, specifically targeted CAR-T cells achieve high safety and efficacy in B-NHL.
非病毒,專門針對(duì)的CAR-T細(xì)胞在B-NHL中獲得了高安全性和功效。
55.Spatial profiling of chromatin accessibility in mouse and human tissues.
小鼠和人體組織中染色質(zhì)可及性的空間分析。
56.Selective TnsC recruitment enhances the fidelity of RNA-guided transposition.
選擇性TnsC募集增強(qiáng)了RNA引導(dǎo)的轉(zhuǎn)座的保真度。
57.In vivo single-molecule analysis reveals COOLAIR RNA structural diversity.
體內(nèi)單分子分析揭示了COOLAIR RNA結(jié)構(gòu)多樣性。
58.Structural basis for SHOC2 modulation of RAS signalling.
SHOC2調(diào)制RAS信號(hào)傳導(dǎo)的結(jié)構(gòu)基礎(chǔ)。
59.Structure–function analysis of the SHOC2–MRAS–PP1C holophosphatase complex.
SHOC2–MRAS–PP1C求全磷酸酶復(fù)合物的結(jié)構(gòu)-功能分析。
60.Structure of the MRAS–SHOC2–PP1C phosphatase complex.
MRA -SHOC2 – PP1C全磷酸酶復(fù)合物的結(jié)構(gòu)。
61.The risks of overstating the climate benefits of ecosystem restoration.
夸大生態(tài)系統(tǒng)恢復(fù)的氣候益處的風(fēng)險(xiǎn)。
62.Reply to: The risks of overstating the climate benefits of ecosystem restoration.
答復(fù):夸大生態(tài)系統(tǒng)恢復(fù)的氣候益處的風(fēng)險(xiǎn)。
63.A biochemical timer phases condensates in and out in cells.
生化計(jì)時(shí)器相在細(xì)胞中凝結(jié)和輸出。
64.Simple solids can mimic complex electronic states.
簡(jiǎn)單的固體可以模仿復(fù)雜的電子狀態(tài)。
65.Earliest known surgery was of a child in Borneo 31,000 years ago.
最早的已知手術(shù)是31,000年前的婆羅洲的一個(gè)孩子。
66.Fluorescence limitations overcome by engineering light–matter interactions.
通過(guò)工程光-物質(zhì)相互作用克服了熒光限制。
67.A plant auxin-binding protein resurfaces after a deep dive.
深水潛水后,植物生長(zhǎng)素結(jié)合蛋白會(huì)浮出水面。
68.Two-layer design protects genes from mutations in their enhancers.
兩層設(shè)計(jì)可保護(hù)基因免受增強(qiáng)子中突變的影響。
69.Tunable quantum criticalities in an isospin extended Hubbard model simulator.
同位旋擴(kuò)展的哈伯德模型模擬器中的可調(diào)量子臨界點(diǎn)。
70.Extended Bose–Hubbard model with dipolar excitons.
帶有偶性激子的擴(kuò)展Bose–Hubbard模型。
71.Discovery of charge density wave in a kagome lattice antiferromagnet.
發(fā)現(xiàn)kagome晶格反鐵磁體中的電荷密度波。
72.Femtosecond laser writing of lithium niobate ferroelectric nanodomains.
飛秒二甲硅酸鋰鐵電納米域的激光寫入。
73.Delayed fluorescence from inverted singlet and triplet excited states.
倒置單線和三重激發(fā)態(tài)的延遲熒光。
74.Attosecond spectroscopy of size-resolved water clusters.
尺寸分辨水簇的埃秒光譜。
75.The first-principles phase diagram of monolayer nanoconfined water.
單層納米限制水的第一原理相圖。
76.A year-round satellite sea-ice thickness record from CryoSat-2.
CryoSat-2的全年衛(wèi)星海冰厚度記錄。
77.Deformation and seismicity decline before the 2021 Fagradalsfjall eruption.
在2021年Fagradalsfjall爆發(fā)之前的變形和地震性下降。
78.Rapid shifting of a deep magmatic source at Fagradalsfjall volcano, Iceland.
在冰島的Fagradalsfjall火山快速深層巖漿源轉(zhuǎn)移。
79.Anticyclonic eddies aggregate pelagic predators in a subtropical gyre.
副熱帶環(huán)流中的反氣旋渦流聚集了遠(yuǎn)洋捕食者。
80.Saccorhytus is an early ecdysozoan and not the earliest deuterostome.
Saccorhytus 是一種早期的蛻皮動(dòng)物,而不是最早的后口動(dòng)物。
81.Surgical amputation of a limb 31,000 years ago in Borneo.
31,000年前在婆羅洲的肢體截肢手術(shù)。
82.African-specific molecular taxonomy of prostate cancer.
前列腺癌的非洲特異性分子分類學(xué)。
83.The whisking oscillator circuit.
攪拌振蕩器電路。
84.The role of somatosensory innervation of adipose tissues.
脂肪組織的體感神經(jīng)支配的作用。
85.ABP1–TMK auxin perception for global phosphorylation and auxin canalization.
ABP1–TMK生長(zhǎng)素對(duì)全球磷酸化和生長(zhǎng)素通道化的感知。
86.Identification of trypsin-degrading commensals in the large intestine.
大腸中胰蛋白酶降解共生體的鑒定。
87.Phosphorylation of muramyl peptides by NAGK is required for NOD2 activation.
NOD2激活需要通過(guò)NAGK對(duì)Muramyl肽的磷酸化。
88.A condensate dynamic instability orchestrates actomyosin cortex activation.
冷凝物動(dòng)態(tài)不穩(wěn)定性策劃了肌動(dòng)球蛋白皮質(zhì)激活。
89.Structures and mechanism of the plant PIN-FORMED auxin transporter.
植物PIN-FORMED生長(zhǎng)素轉(zhuǎn)運(yùn)蛋白的結(jié)構(gòu)和機(jī)制。
90.Structural insights into auxin recognition and efflux by Arabidopsis PIN1.
擬南芥PIN1對(duì)生長(zhǎng)素識(shí)別和外排的結(jié)構(gòu)見(jiàn)解。
91.Structures and mechanisms of the Arabidopsis auxin transporter PIN3.
擬南芥生長(zhǎng)素轉(zhuǎn)運(yùn)蛋白PIN3的結(jié)構(gòu)和機(jī)制。
92.Organizing structural principles of the IL-17 ligand–receptor axis.
IL-17配體-受體軸的組織結(jié)構(gòu)原理。
93.Mechanism of AAA+ ATPase-mediated RuvAB–Holliday junction branch migration.
AAA+ ATPase介導(dǎo)的RuvAB–Holliday連接的分支遷移的機(jī)理。
94.Atmospheric waves reinforced tsunami after Tongan eruption.
湯加爆發(fā)后大氣波增強(qiáng)了海嘯。
95.Neuronal culprits of sickness behaviours.
疾病行為的神經(jīng)元罪犯。
96.Interfaces boost response to electric fields in layered oxides.
接口增強(qiáng)對(duì)分層氧化物中電場(chǎng)的反應(yīng)。
97.Two-drug trick to target the brain blocks toxicity in the body.
靶向腦部大腦毒性的兩種藥物。
98.Stressful start causes chromosome errors in human embryos.
緊張的開(kāi)始會(huì)導(dǎo)致人類胚胎中的染色體錯(cuò)誤。
99.A fast radio burst source at a complex magnetized site in a barred galaxy.
在棒狀星系中的一個(gè)復(fù)雜磁化地點(diǎn)的快速無(wú)線電爆發(fā)源。
100.An elementary quantum network of entangled optical atomic clocks.
糾纏光原子時(shí)鐘的基本量子網(wǎng)絡(luò)。
101.Atomically engineered interfaces yield extraordinary electrostriction.
原子設(shè)計(jì)的界面產(chǎn)生了非凡的電曲。
102.A dynamically reprogrammable surface with self-evolving shape morphing.
動(dòng)態(tài)重編程的表面,具有自我進(jìn)化的形狀變形。
103.Aerial additive manufacturing with multiple autonomous robots.
帶有多個(gè)自動(dòng)駕駛機(jī)器人的天線添加劑制造。
104.Large harvested energy with non-linear pyroelectric modules.
帶有非線性熱釋電模塊的大型收獲能量。
105.Electroreduction of nitrogen with almost 100% current-to-ammonia efficiency.
具有幾乎100%電流到肌電效率的氮的電源。
106.Diverse tsunamigenesis triggered by the Hunga Tonga-Hunga Ha’apai eruption.
匈牙利湯加·漢加·哈阿帕(Hunga-Hunga Ha’apai)觸發(fā)的多樣化的海藻。
107.Global Tonga tsunami explained by a fast-moving atmospheric source.
全球湯加海嘯用快速移動(dòng)的大氣來(lái)源解釋。
108.Surface-to-space atmospheric waves from Hunga Tonga–Hunga Ha’apai eruption.
匈牙利湯加·漢加·哈阿帕(Hunga-Hunga Ha’apai)爆發(fā)的地表到空間大氣波。
109.Divergent genomic trajectories predate the origin of animals and fungi.
不同的基因組軌跡早于動(dòng)物和真菌的起源。
110.DOCK2 is involved in the host genetics and biology of severe COVID-19.
DOCK2參與了嚴(yán)重COVID-19的宿主遺傳學(xué)和生物學(xué)。
111.Brainstem ADCYAP1+ neurons control multiple aspects of sickness behaviour.
腦干ADCYAP1+神經(jīng)元控制疾病行為的多個(gè)方面。
112.Hippocampal astrocytes encode reward location.
海馬星形膠質(zhì)細(xì)胞編碼獎(jiǎng)勵(lì)位置。
113.Independent origins of fetal liver haematopoietic stem and progenitor cells.
胎兒肝造血干和祖細(xì)胞的獨(dú)立起源。
114.Coronaviruses exploit a host cysteine-aspartic protease for replication.
冠狀病毒利用宿主半胱氨酸-天冬氨酸蛋白酶復(fù)制。
115.The mechanism of RNA capping by SARS-CoV-2.
SARS-CoV-2的RNA封帽機(jī)制。
116.Impaired ketogenesis ties metabolism to T cell dysfunction in COVID-19.
在COVID-19中,生酮發(fā)生與T細(xì)胞功能障礙的新陳代謝有關(guān)。
117.A universal coupling mechanism of respiratory complex I.
呼吸復(fù)合物I的通用耦合機(jī)制。
118.A phosphoinositide signalling pathway mediates rapid lysosomal repair.
磷酸肌醇信號(hào)通路可介導(dǎo)快速的溶酶體修復(fù)。
119.Brain-restricted mTOR inhibition with binary pharmacology.
用二元藥理學(xué)抑制大腦限制的mTOR抑制作用。
120.CDK11 regulates pre-mRNA splicing by phosphorylation of SF3B1.
CDK11通過(guò)SF3B1的磷酸化調(diào)節(jié)前mRNA剪接。
121.Structures of a phycobilisome in light-harvesting and photoprotected states.
光捕獲和光保護(hù)狀態(tài)下的植物質(zhì)體的結(jié)構(gòu)。
122.Autoantibody mimicry of hormone action at the thyrotropin receptor.
激素作用的自身抗體模仿甲狀腺蛋白受體。
123.Hormone- and antibody-mediated activation of the thyrotropin receptor.
激素和抗體介導(dǎo)的硫醇受體的激活。
124.Fossils reveal the deep roots of jawed vertebrates.
化石揭示了頜脊椎動(dòng)物的根源。
125.Hybrid laser-trapping technique lights the way for neutral atoms.
混合激光捕獲技術(shù)為中性原子開(kāi)明了道路。
126.Life brought to artificial cells.
生命到人造細(xì)胞。
127.The origins of medulloblastoma tumours in humans.
人類髓母細(xì)胞瘤的起源。
128.From the archive: ancient poisonous honey, and museum photography.
來(lái)自檔案:古老的有毒蜂蜜和博物館攝影。
129.Outer regions of galaxy clusters host radio megahaloes.
銀河系簇的外部區(qū)域發(fā)射無(wú)線電巨暈。
130.Lifting the veil on the oldest-known animals.
抬起最古老的動(dòng)物的面紗。
131.A nomenclature consensus for nervous system organoids and assembloids.
神經(jīng)系統(tǒng)類器官和組合物的術(shù)語(yǔ)共識(shí)。
132.Galaxy clusters enveloped by vast volumes of relativistic electrons.
星系簇被大量相對(duì)論電子包裹。
133.Observations of a Magellanic Corona.
觀察麥哲倫日冕。
134.Universal control of a six-qubit quantum processor in silicon.
硅中六量量子處理器的通用控制。
135.Topological Chern vectors in three-dimensional photonic crystals.
三維光子晶體中的拓?fù)銫hern載體。
136.Photonic topological insulator induced by a dislocation in three dimensions.
三維錯(cuò)位誘導(dǎo)光子拓?fù)浣^緣子。
137.Anomalous slip in body-centred cubic metals.
以人體為中心的立方金屬的異?;瑒?dòng)。
138.Tracking single adatoms in liquid in a transmission electron microscope.
在透射電子顯微鏡中跟蹤液體中的單個(gè)吸附原子。
139.Antarctic calving loss rivals ice-shelf thinning.
南極產(chǎn)犢損失對(duì)抗冰架稀疏。
140.The oldest complete jawed vertebrates from the early Silurian of China.
來(lái)自中國(guó)早期志留紀(jì)的最古老的完整頜脊椎動(dòng)物。
141.Galeaspid anatomy and the origin of vertebrate paired appendages.
Galeaspid解剖學(xué)和脊椎動(dòng)物成對(duì)附屬物的起源。
142.The oldest gnathostome teeth.
最古老的有顎動(dòng)物牙齒。
143.Spiny chondrichthyan from the lower Silurian of South China.
來(lái)自中國(guó)南部志留紀(jì)的刺軟骨魚。
144.Control of cell state transitions.
控制細(xì)胞狀態(tài)過(guò)渡。
145.Glucose-driven TOR–FIE–PRC2 signalling controls plant development.
葡萄糖驅(qū)動(dòng)的TOR-FIE-PRC2信號(hào)傳導(dǎo)控制植物的發(fā)育。
146.Pandemic-scale phylogenomics reveals the SARS-CoV-2 recombination landscape.
大流行級(jí)系統(tǒng)組學(xué)揭示了SARS-CoV-2重組景觀。
147.Long-primed germinal centres with enduring affinity maturation and clonal migration.
長(zhǎng)期發(fā)芽的生發(fā)中心具有持久的親和力成熟和克隆遷移。
148.CLN3 is required for the clearance of glycerophosphodiesters from lysosomes.
CLN3是從溶酶體清除甘油磷酸化劑所必需的。
149.Unified rhombic lip origins of group 3 and group 4 medulloblastoma.
第3組和第4組髓母細(xì)胞瘤的統(tǒng)一菱形唇任。
150.Failure of human rhombic lip differentiation underlies medulloblastoma formation.
人類菱形唇分化的失敗是髓母細(xì)胞瘤形成的基礎(chǔ)。
151.Living material assembly of bacteriogenic protocells.
生物原料的細(xì)菌原細(xì)胞組裝。
152.A mechanism for oxidative damage repair at gene regulatory elements.
基因調(diào)節(jié)元件上氧化損傷修復(fù)的機(jī)制。
153.Columnar structure of human telomeric chromatin.
人端粒染色質(zhì)的柱狀結(jié)構(gòu)。
154.Methotrexate recognition by the human reduced folate carrier SLC19A1.
人類還原葉酸載體SLC19A1的甲氨蝶呤識(shí)別。