最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網(wǎng) 會員登陸 & 注冊

朱長江阮立志偏微分方程簡明教程內(nèi)容提要

2022-05-03 06:40 作者:zhangzujin  | 我要投稿

[偏微分方程]001偏微分方程的定義與例子 https://mp.weixin.qq.com/s?__biz=MzU3OTExMzI1Mg==&mid=2247524044&idx=2&sn=0e158ea50bc56a5951651e007a8510b7&chksm=fd69c687ca1e4f9105928c72edb0e930550bc6b0abb1ce6da87532293122de8376a251989bc7

[偏微分方程]002偏微分方程的解, 與常微分方程的區(qū)別與聯(lián)系, 求解的例子 https://mp.weixin.qq.com/s?__biz=MzU3OTExMzI1Mg==&mid=2247524049&idx=2&sn=b7542f2d6b2a22471afd251c2430ac77&chksm=fd69c69aca1e4f8c115866297d849c8afecbe5869e662b507553988dcbdcf20b6fb2deb064f1

[偏微分方程]003偏微分方程的階 https://mp.weixin.qq.com/s?__biz=MzU3OTExMzI1Mg==&mid=2247524083&idx=3&sn=fcfcf7451deb0aa2f64616b81458bd8b&chksm=fd69c6b8ca1e4fae3471bbb5de17ccb6d7c7161c573681cb0866803045cf0f6902d60ab95c43

[偏微分方程]004線性偏微分方程 https://mp.weixin.qq.com/s?__biz=MzU3OTExMzI1Mg==&mid=2247524093&idx=2&sn=4f3ea1bd7dc5cd263c2f8ca4750819ae&chksm=fd69c6b6ca1e4fa0162ff4dc694fb29ae525db1b8b2771309a7ff94df33209627e942f9e538e

[偏微分方程]005非線性偏微分方程 https://mp.weixin.qq.com/s?__biz=MzU3OTExMzI1Mg==&mid=2247524138&idx=4&sn=8416270967f24a505be57c6abf1b10ee&chksm=fd69c761ca1e4e7709dc44b8630336d2bc023f62acb11bb28c254c82d2a18de893dbf8e054f8

[偏微分方程]006幾個經(jīng)典方程: 弦振動方程, 熱傳導方程, Laplace方程 ?https://mp.weixin.qq.com/s?__biz=MzU3OTExMzI1Mg==&mid=2247524163&idx=3&sn=52bc5483a526ff5ea77f7292fcfb59d9&chksm=fd69c708ca1e4e1e8f8ff0e43b96eeabcc121189bba98417bd5732b38a397910e22e5c6409db

[偏微分方程]007定解條件(初值條件,邊界條件)與適定性 ?https://mp.weixin.qq.com/s?__biz=MzU3OTExMzI1Mg==&mid=2247524205&idx=3&sn=5f5fdfd3edb07cac0b53b4503d9d1bc1&chksm=fd69c726ca1e4e30bb0b955360a7d84fa1ac64663b4069f584d70347458f4a9d468138ee0d8c

[偏微分方程]008二階擬線性偏微分方程的特征 ?https://mp.weixin.qq.com/s?__biz=MzU3OTExMzI1Mg==&mid=2247524251&idx=3&sn=54ad9036d41057e0f2b05ca6ad8de3e4&chksm=fd69c7d0ca1e4ec65c5d188bb6679feb897a0bf1031cee1f1825d5b45a7f65e15bfe4ced8ba9

[偏微分方程]009具有兩個自變量的二階線性偏微分方程的分類 https://mp.weixin.qq.com/s?__biz=MzU3OTExMzI1Mg==&mid=2247524296&idx=3&sn=055e2c9634b19579db59002b07779022&chksm=fd69c783ca1e4e953f4d018e26f284fbf11c6b884c5415ea631857ef9db517c1cd8fc507695c

[偏微分方程]010具有多個自變量的二階線性偏微分方程的分類 https://mp.weixin.qq.com/s?__biz=MzU3OTExMzI1Mg==&mid=2247524314&idx=2&sn=8ae388cf8b925d777b2608e5f0ec7719&chksm=fd69c791ca1e4e87b138f3cc23e158eacc183cb123cc42e3bd7eb6bcbc62d29e2875d3966975

[偏微分方程]011分離變量法的理論基礎(chǔ) https://mp.weixin.qq.com/s?__biz=MzU3OTExMzI1Mg==&mid=2247524334&idx=3&sn=4c0b381554827a78b11eb15de3ca6fe0&chksm=fd69c7a5ca1e4eb3d1ca5ecb9d4b9939505e2b3a90ee199cd40464f9de5f3597866ce68c03b4

[偏微分方程]012一維齊次波動方程的混合問題的解 https://mp.weixin.qq.com/s?__biz=MzU3OTExMzI1Mg==&mid=2247524381&idx=3&sn=f7eedbce283670f50731a689eedb880b&chksm=fd693856ca1eb140421be9f8eed99944ae00d650c27302cf7498bb3a2c872c79e1ca975881ad

[偏微分方程]013二維波動方程的混合問題的解 https://mp.weixin.qq.com/s?__biz=MzU3OTExMzI1Mg==&mid=2247524430&idx=3&sn=82cfb8813f9f8a476670672e1ce86579&chksm=fd693805ca1eb1139f507ebcebabc9c84ffe5c93717f4f3455ee42d58aefbda2defe1a20b47c

[偏微分方程]014 一維熱傳導方程的第二類初邊值問題的解 https://mp.weixin.qq.com/s?__biz=MzU3OTExMzI1Mg==&mid=2247524467&idx=3&sn=7ffb1616991357271d58a194872b6a92&chksm=fd693838ca1eb12e0decc0067e40e18e616f2eca9ee4af0b33e75a3f770892877ddf104413d9

[偏微分方程]015二維波動方程的混合問題的解 https://mp.weixin.qq.com/s?__biz=MzU3OTExMzI1Mg==&mid=2247524498&idx=3&sn=4f63c52590ffca92ef3289277d67558c&chksm=fd6938d9ca1eb1cf4cd3e1ba18de80103e6d5a4f9914337c16268a85dfa9faaf8c06410cb0d3

[偏微分方程]016方體上三維 Laplace 方程的解 https://mp.weixin.qq.com/s?__biz=MzU3OTExMzI1Mg==&mid=2247524527&idx=3&sn=3690243b3ff9027683c4a7efb8bce706&chksm=fd6938e4ca1eb1f28fba5c85f332b02936e25027961997f22e0f9f8af0bedf704c5788bf1789

[偏微分方程]017圓上二維 Laplace 方程的解 https://mp.weixin.qq.com/s?__biz=MzU3OTExMzI1Mg==&mid=2247524591&idx=5&sn=074d2909e49ec86705a87ffb0ed15dc0&chksm=fd6938a4ca1eb1b27054b4de7e6d0f7f401ff62c9131e3e05399b727987ab1ac1d13597d5445

[偏微分方程]018$n$? 維波動方程 Cauchy 問題的 Duhamel 原理 https://mp.weixin.qq.com/s?__biz=MzU3OTExMzI1Mg==&mid=2247524627&idx=3&sn=94c5109a5587447a3805abc4b89c9a04&chksm=fd693958ca1eb04eff55974790ac53b693cf99d944dd178a1879c350bf501965a8fd16482e65

[偏微分方程]019$n$ 維波動方程第一類邊界問題的邊界條件齊次化 https://mp.weixin.qq.com/s?__biz=MzU3OTExMzI1Mg==&mid=2247524637&idx=3&sn=69bb2d43d06657e168bfceae0ea3a0d9&chksm=fd693956ca1eb040ecad0fa5120082a45c898cb0aab780d5f26a270a9d4ac2154f919d864752

[偏微分方程]020一維波動方程第二類邊界問題的邊界條件齊次化 https://mp.weixin.qq.com/s?__biz=MzU3OTExMzI1Mg==&mid=2247524649&idx=3&sn=4c0dd961e64b8885e0d89d086cb3f32a&chksm=fd693962ca1eb074575020f6345b41dc7f84298262afcbdd212ffeccfd2e50e3542e9295a9f4

[偏微分方程]021無界弦的自由振動問題的解的表達式 https://mp.weixin.qq.com/s?__biz=MzU3OTExMzI1Mg==&mid=2247524686&idx=4&sn=abc9bb7c0fbf5c895e4dd182ff7043ed&chksm=fd693905ca1eb01348ccd6ca0f941c73abe311167fd4c245d9039cba3ff96280063f7d7d9c66

[偏微分方程]022無界弦的自由振動問題的解的穩(wěn)定性 https://mp.weixin.qq.com/s?__biz=MzU3OTExMzI1Mg==&mid=2247524704&idx=4&sn=f82c25333426cbe0dbf008074dc02c85&chksm=fd69392bca1eb03d4596418432b14473116bf12a965518ffcd30e9b1eeb363e10830b7e496b2

[偏微分方程]023d'Alembert 公式的物理意義 https://mp.weixin.qq.com/s?__biz=MzU3OTExMzI1Mg==&mid=2247524755&idx=7&sn=579c782a2b8c3ecdc020aec9b9c5eb76&chksm=fd6939d8ca1eb0ce030004e1804e4742819ae349e4c78e4d6e4811e2d73e5e944ca0f112a629

[偏微分方程]024d'Almbert 公式的幾何解釋 https://mp.weixin.qq.com/s?__biz=MzU3OTExMzI1Mg==&mid=2247524755&idx=6&sn=334347f76e1df35c6e7cfd9182e767b1&chksm=fd6939d8ca1eb0ce96be8ea7ebe032b73d51f42ad3ff8c79fbed235739cbba787e37eccf1f41

[偏微分方程]025依賴區(qū)域 https://mp.weixin.qq.com/s?__biz=MzU3OTExMzI1Mg==&mid=2247524755&idx=5&sn=51568b13bccc2b06934d4bc64fc86366&chksm=fd6939d8ca1eb0cec86ed30886e28eb0e7bd7bc1b2289a84c4cf890ec2a573c282310ee16b5f

[偏微分方程]026決定區(qū)域 https://mp.weixin.qq.com/s?__biz=MzU3OTExMzI1Mg==&mid=2247524782&idx=7&sn=936d7b33eaf4a8b0284f5ef1c618f74d&chksm=fd6939e5ca1eb0f35a671d6b2cff9cb9dec3145e800760d08225d709adccdd5a678174e6c727

[偏微分方程]027影響區(qū)域 https://mp.weixin.qq.com/s?__biz=MzU3OTExMzI1Mg==&mid=2247524782&idx=6&sn=839a64b652c63332d9d9bdfaa60b665b&chksm=fd6939e5ca1eb0f3d5f4e06fb9d1e7f8c7a1451531ca945fec4fddb5f7b51cd6da6dd59165dd

[偏微分方程]028半直線上齊次波動方程的 Dirichlet 問題的解 https://mp.weixin.qq.com/s?__biz=MzU3OTExMzI1Mg==&mid=2247524782&idx=5&sn=66abfa8bfecd183909643dda6f94525b&chksm=fd6939e5ca1eb0f3ff4bd316870654da269e4439aefc5e1bfc832cf06c9b5e3d9b022da65479

[偏微分方程]029半直線上齊次波動方程的 Neumann 問題的解 https://mp.weixin.qq.com/s?__biz=MzU3OTExMzI1Mg==&mid=2247524782&idx=4&sn=2a57d66acf1b19a8c7c2e8174c39d327&chksm=fd6939e5ca1eb0f3d5afdadf3ac328286118f0546aea0c3b5faabaaa341181253c71eb4f470f

[偏微分方程]030非齊次波動方程的 Cauchy 問題的解 https://mp.weixin.qq.com/s?__biz=MzU3OTExMzI1Mg==&mid=2247524809&idx=8&sn=771756b1c23397aa89331800455e4f37&chksm=fd693982ca1eb094c3ded4d8e0c2f04c37d70a3674e38b85b6c2e72006162ae4d1be4dbac503

[偏微分方程]031非齊次波動方程的混合問題的解 https://mp.weixin.qq.com/s?__biz=MzU3OTExMzI1Mg==&mid=2247524809&idx=7&sn=de51bd2ea51735701859f989f8bfd28a&chksm=fd693982ca1eb094bdbf179413fae20b69be981464a76e7dbf092b309049ac6fb96eb9899707

[偏微分方程]032三維齊次波動方程的解 https://mp.weixin.qq.com/s?__biz=MzU3OTExMzI1Mg==&mid=2247524809&idx=6&sn=b78bfd7864dabd292a550ff8ea6d4530&chksm=fd693982ca1eb094281ff6dd796006ba3a4c6ea36b117b51a84af243d7a71773126704b2eb71

[偏微分方程]033二維齊次波動方程的解 https://mp.weixin.qq.com/s?__biz=MzU3OTExMzI1Mg==&mid=2247524809&idx=5&sn=dfa3689cbe6f27f31f0582299ff7953f&chksm=fd693982ca1eb094143db284451c9cc9117acf5943e4cc3c858395830c329a1086252bd05dea

[偏微分方程]034三維波動方程的依賴區(qū)域, 決定區(qū)域和影響區(qū)域 https://mp.weixin.qq.com/s?__biz=MzU3OTExMzI1Mg==&mid=2247524809&idx=4&sn=8819ffdfd44de2bb88e825b137ebd7b2&chksm=fd693982ca1eb09484f691e61693b0dcfb515d401d76ae2042cee18478a34bebfc070368a1a3

[偏微分方程]035二維波動方程的依賴區(qū)域, 決定區(qū)域和影響區(qū)域 https://mp.weixin.qq.com/s?__biz=MzU3OTExMzI1Mg==&mid=2247524809&idx=3&sn=76658bb53a6343eb731b7a5374af8c62&chksm=fd693982ca1eb094622d4d51a41203b32f88653119531de6f3965dd452df9eb2a63e72c06ea7

[偏微分方程]036波的傳播速度 https://mp.weixin.qq.com/s?__biz=MzU3OTExMzI1Mg==&mid=2247524821&idx=8&sn=b30592a0e0902eaca3161117466ba8c4&chksm=fd69399eca1eb08860144f0fb35145a1f094772b1fdd64d505be88f9253a86ce9146871669cf

[偏微分方程]037三維波的物理性質(zhì) https://mp.weixin.qq.com/s?__biz=MzU3OTExMzI1Mg==&mid=2247524821&idx=7&sn=a41a1e689fcbd4d429f8e199bc480641&chksm=fd69399eca1eb0882494c65aa5388b667a42ef01cd6cbc32bccfdfcdd335d39d0973b729bffb

[偏微分方程]038二維波的物理性質(zhì) https://mp.weixin.qq.com/s?__biz=MzU3OTExMzI1Mg==&mid=2247524821&idx=6&sn=a34d63303f1f4d2f9478297699a1c894&chksm=fd69399eca1eb088c624032d2582c28590ee887ee715f156855ea78e54ebb8aa311fe8ce0c46

[偏微分方程]039非齊次波動方程 Cauchy 問題的解 https://mp.weixin.qq.com/s?__biz=MzU3OTExMzI1Mg==&mid=2247524821&idx=5&sn=1236102abd5774f21ccddeeba2aa133d&chksm=fd69399eca1eb088808cfef2c9533676984ffb72e486a27218fdad2b416aa6bf23989639073f

[偏微分方程]040熱傳導方程的求解方法總結(jié) https://mp.weixin.qq.com/s?__biz=MzU3OTExMzI1Mg==&mid=2247524821&idx=4&sn=2511a92a0c02c4edef817f37c36beb8f&chksm=fd69399eca1eb088209a02c0412c71f7fb2ebb264d2c4b42f14901d7492c640fa23e708677ab

[偏微分方程]041一維熱傳導方程解的性質(zhì) https://mp.weixin.qq.com/s?__biz=MzU3OTExMzI1Mg==&mid=2247524868&idx=7&sn=577284dc118e57298a5ca43dae1723eb&chksm=fd693a4fca1eb35947f62b9505b867a546da4d615d6c1708a645abb77d0f1016975446f4ff82

[偏微分方程]041一維熱傳導方程解的性質(zhì) https://mp.weixin.qq.com/s?__biz=MzU3OTExMzI1Mg==&mid=2247524868&idx=7&sn=577284dc118e57298a5ca43dae1723eb&chksm=fd693a4fca1eb35947f62b9505b867a546da4d615d6c1708a645abb77d0f1016975446f4ff82

[偏微分方程]042一維熱傳導方程 Cauchy 問題的相似變換法求解 https://mp.weixin.qq.com/s?__biz=MzU3OTExMzI1Mg==&mid=2247524868&idx=6&sn=03111305b244ac292102c7536bd2a307&chksm=fd693a4fca1eb35939ccad0922b09fc2132579254015ec23d341d1661ec384e400ca017c4e1d

[偏微分方程]042一維熱傳導方程 Cauchy 問題的相似變換法求解 https://mp.weixin.qq.com/s?__biz=MzU3OTExMzI1Mg==&mid=2247524868&idx=6&sn=03111305b244ac292102c7536bd2a307&chksm=fd693a4fca1eb35939ccad0922b09fc2132579254015ec23d341d1661ec384e400ca017c4e1d

[偏微分方程]043一維非齊次熱傳導方程的求解 https://mp.weixin.qq.com/s?__biz=MzU3OTExMzI1Mg==&mid=2247524868&idx=5&sn=15b86a424b82b61258fd5d98552015a8&chksm=fd693a4fca1eb359533f7c2190045c58c665c4d9c762a8b06629ff9fa4efbbf985346ef5cb6a

[偏微分方程]043一維非齊次熱傳導方程的求解 https://mp.weixin.qq.com/s?__biz=MzU3OTExMzI1Mg==&mid=2247524868&idx=5&sn=15b86a424b82b61258fd5d98552015a8&chksm=fd693a4fca1eb359533f7c2190045c58c665c4d9c762a8b06629ff9fa4efbbf985346ef5cb6a

[偏微分方程]044半直線上熱傳導方程的 Dirichlet 問題的解 https://mp.weixin.qq.com/s?__biz=MzU3OTExMzI1Mg==&mid=2247524868&idx=4&sn=59802f650cb18f91d78d770d0608b496&chksm=fd693a4fca1eb359daefce1279dd12f03e15a2c5ade71cf2fe27377e2f62f0a2439f273dba29

[偏微分方程]044半直線上熱傳導方程的 Dirichlet 問題的解 https://mp.weixin.qq.com/s?__biz=MzU3OTExMzI1Mg==&mid=2247524868&idx=4&sn=59802f650cb18f91d78d770d0608b496&chksm=fd693a4fca1eb359daefce1279dd12f03e15a2c5ade71cf2fe27377e2f62f0a2439f273dba29

[偏微分方程]045半直線上熱傳導方程的 Neumann 問題的解 https://mp.weixin.qq.com/s?__biz=MzU3OTExMzI1Mg==&mid=2247524868&idx=3&sn=aaaec78ac82541726c56c204c396120b&chksm=fd693a4fca1eb359186ae46bbf1f87b9485f18da5ef36818ef1dd55e40841dbec2e9c5154f3b

[偏微分方程]045半直線上熱傳導方程的 Neumann 問題的解 https://mp.weixin.qq.com/s?__biz=MzU3OTExMzI1Mg==&mid=2247524868&idx=3&sn=aaaec78ac82541726c56c204c396120b&chksm=fd693a4fca1eb359186ae46bbf1f87b9485f18da5ef36818ef1dd55e40841dbec2e9c5154f3b

[偏微分方程]046與拋物方程有關(guān)的一些記號 https://mp.weixin.qq.com/s?__biz=MzU3OTExMzI1Mg==&mid=2247524890&idx=7&sn=0b0d6e6a57b19d803b5143016468b2c1&chksm=fd693a51ca1eb34710ca119ada4412ceda5970265ebe67350db9afb46f26ece96ba0ca5e091e

[偏微分方程]047帶冷源的熱傳導方程的弱極值原理 https://mp.weixin.qq.com/s?__biz=MzU3OTExMzI1Mg==&mid=2247524890&idx=6&sn=f869e87fcec3e240c369e8ec27a6a141&chksm=fd693a51ca1eb347b26f01e64ae3d23ad2ce0a9261960a2cbac94836cded0769c2e000167cc7

[偏微分方程]048帶熱源的熱傳導方程的弱極值原理 https://mp.weixin.qq.com/s?__biz=MzU3OTExMzI1Mg==&mid=2247524890&idx=5&sn=f79ae6760d39a8256237a3b9496f121a&chksm=fd693a51ca1eb3479b047102cc0a251bbba4ddea60b1b1426477944f60b9f3fc1bc694b4fc76

[偏微分方程]049零次項系數(shù)非負時拋物型方程的弱極值原理 https://mp.weixin.qq.com/s?__biz=MzU3OTExMzI1Mg==&mid=2247524890&idx=4&sn=728beeee94556ce8ca4f2bb1f707ac2c&chksm=fd693a51ca1eb3478a625aefb04ab29488da9be2c3f3043fa3a8ca9bceea8053498b99426f12

[偏微分方程]050零次項系數(shù)有負的下界時拋物型方程的弱極值原理 https://mp.weixin.qq.com/s?__biz=MzU3OTExMzI1Mg==&mid=2247524949&idx=8&sn=985f0f16c9d06c9116e92e1737d592f6&chksm=fd693a1eca1eb3085769ed492a40fbbf6cb45e922f2154b036baa43d4a710f25267d789ae03a

[偏微分方程]051熱傳導方程的比較原理 https://mp.weixin.qq.com/s?__biz=MzU3OTExMzI1Mg==&mid=2247524949&idx=7&sn=a1cc200857d91c04cc4e9f044dd51846&chksm=fd693a1eca1eb3080d758baaa4f480eb95acb0c28e15d0f1e610c8dc35351873e64e99ae6df6

[偏微分方程]052拋物方程第一邊值問題解的最大模估計 https://mp.weixin.qq.com/s?__biz=MzU3OTExMzI1Mg==&mid=2247524949&idx=6&sn=01feb657b4b95d12f695fe383cf9c6d1&chksm=fd693a1eca1eb308df30f342641282738c29523aec4f72c71c44f98f09180416e10fbf452411

[偏微分方程]053拋物方程第一邊值問題解的唯一性 https://mp.weixin.qq.com/s?__biz=MzU3OTExMzI1Mg==&mid=2247524968&idx=8&sn=4c37732f6069adb23ea9e42a736a8292&chksm=fd693a23ca1eb335f3ab05e48089746b9c9991b9e7bdc3d7c11cacd3fa73e3a9492f267b2ac4

[偏微分方程]054拋物方程第一邊值問題解的穩(wěn)定性 https://mp.weixin.qq.com/s?__biz=MzU3OTExMzI1Mg==&mid=2247524968&idx=7&sn=5a014ea316631eaa0b3300899b01e3ca&chksm=fd693a23ca1eb335c6adc8e30e5df3ac48009840ece708738671747ea6f284348324db93d85a

[偏微分方程]055拋物方程第三邊值問題解的最大模估計 https://mp.weixin.qq.com/s?__biz=MzU3OTExMzI1Mg==&mid=2247524968&idx=6&sn=5ae26583d3b51bbab3f34aa800247c17&chksm=fd693a23ca1eb33591d581c603572f6ec7581db253dcabc558765b5388f8fd5f629c4732591e

[偏微分方程]056拋物方程第二/三邊值問題解的最大模估計 https://mp.weixin.qq.com/s?__biz=MzU3OTExMzI1Mg==&mid=2247524968&idx=5&sn=01c14417cb876c5c8b1623aa5b72ac52&chksm=fd693a23ca1eb33549df4345f994d2dfaf3c96074ccb68e467da36d4bffba62190701fe26bad

[偏微分方程]057零階項系數(shù)非負時拋物方程 Cauchy 問題解的最大模估計 https://mp.weixin.qq.com/s?__biz=MzU3OTExMzI1Mg==&mid=2247525077&idx=8&sn=39d8fd561df2b4fc43167c08de187304&chksm=fd693a9eca1eb38873dafdddfda54c25fbeedb8f61a9c1c5cdf48d61b4fa2d52f19f32d2444c

[偏微分方程]058零階項系數(shù)有負的下界時拋物方程 Cauchy 問題解的最大模估計 https://mp.weixin.qq.com/s?__biz=MzU3OTExMzI1Mg==&mid=2247525077&idx=7&sn=fb9e2e6b63479d3f40cb74db61fa883e&chksm=fd693a9eca1eb38803647f67d2570c4456ab28d599a88eef958f3d5b31579eaa04de3adead89

[偏微分方程]059 $\calN$ 函數(shù)類中拋物方程解的最大模估計 https://mp.weixin.qq.com/s?__biz=MzU3OTExMzI1Mg==&mid=2247525077&idx=6&sn=6645747627ca19b1bd6812af35e4d7b3&chksm=fd693a9eca1eb388a5452236dcc0585a894e5083cd416a0e8bc4de52e4b274c0ccbb11522ff8

[偏微分方程]060有界函數(shù)類及 $\calN$ 函數(shù)類中拋物方程解的適定性 https://mp.weixin.qq.com/s?__biz=MzU3OTExMzI1Mg==&mid=2247525077&idx=5&sn=4d1de28dd090395f865d93c260465986&chksm=fd693a9eca1eb3884faecf3bb5e39d34adadd56f1025bb694cd4a45aab3a9312705389affde4

[偏微分方程]061邊值問題的能量估計 https://mp.weixin.qq.com/s?__biz=MzU3OTExMzI1Mg==&mid=2247525077&idx=4&sn=014523259b4338a0321b37a1afe23ca2&chksm=fd693a9eca1eb38887492d6cf01ee85f759b1db953d4d860ff8d406651ed90d3a4402085d667

[偏微分方程]062Green 公式 https://mp.weixin.qq.com/s?__biz=MzU3OTExMzI1Mg==&mid=2247525077&idx=3&sn=42b0c0cbab8d800233f140a40fd777b6&chksm=fd693a9eca1eb38878f129f684a1ccfb60c1796c77d3af3cb453b1bc62c4bdd3fc3d9429cbcb

[偏微分方程]063調(diào)和函數(shù)與基本解 https://mp.weixin.qq.com/s?__biz=MzU3OTExMzI1Mg==&mid=2247525100&idx=8&sn=d26f6ddd68a582b551219cc86ee868f4&chksm=fd693aa7ca1eb3b128e66fc427a376c632e510522d7d59eb2795215d1e5ae0b6f9141a3b0770

[偏微分方程]064基本積分公式 https://mp.weixin.qq.com/s?__biz=MzU3OTExMzI1Mg==&mid=2247525100&idx=7&sn=f20657062c81b49ac1c89acb785598e4&chksm=fd693aa7ca1eb3b123d7c097ffd5735080ccb2962f30b94256d0a072da510884460820f6ca20

[偏微分方程]065調(diào)和函數(shù)的基本性質(zhì) https://mp.weixin.qq.com/s?__biz=MzU3OTExMzI1Mg==&mid=2247525100&idx=6&sn=067b945bb2d89970fb609f91204df01e&chksm=fd693aa7ca1eb3b1059e76efd54a8b9991662d9790f1494bc8002e36f1de154483ee2ec522ea

[偏微分方程]066Green 函數(shù)的定義 https://mp.weixin.qq.com/s?__biz=MzU3OTExMzI1Mg==&mid=2247525100&idx=5&sn=607f9e68682e559bfc0f07b9292fd1eb&chksm=fd693aa7ca1eb3b1bb8eed7a9bd853855823f0201850c608b0eb9cdf89df153ff67d6641ee48

[偏微分方程]067Green 函數(shù)法 https://mp.weixin.qq.com/s?__biz=MzU3OTExMzI1Mg==&mid=2247525100&idx=4&sn=917e169da1446d7aaeec04a3e44d8793&chksm=fd693aa7ca1eb3b1594fa5a3e13d7c71e655558b5fb6b2d9d0e3dffed7131f62ebea148a0abe

[偏微分方程]068Green 函數(shù)法的意義 https://mp.weixin.qq.com/s?__biz=MzU3OTExMzI1Mg==&mid=2247525100&idx=3&sn=4e8ba39ae5e3b46e21d48681722a6b29&chksm=fd693aa7ca1eb3b1c08bd7f5873c7c04536843c1f523d4921b7dd3dabd5ed59af4a2010958bd

[偏微分方程]069Green 函數(shù)的重要性質(zhì) https://mp.weixin.qq.com/s?__biz=MzU3OTExMzI1Mg==&mid=2247525127&idx=4&sn=84b1e968237a2804d0ca7138938fe9aa&chksm=fd693b4cca1eb25a6dde7b4deb659e4b3d869cb90ce416de892eedb23df201fcac23c49182cb

[偏微分方程]070Poisson 方程的 Dirichlet 問題的解 https://mp.weixin.qq.com/s?__biz=MzU3OTExMzI1Mg==&mid=2247525127&idx=3&sn=cf19dd3bf78053a7a45d436c83c8b57e&chksm=fd693b4cca1eb25a0d61fd40fa02c6575a9b5d444f9841638b5eb662507078fa8993118e73fc

[偏微分方程]071球上的 Green 函數(shù) https://mp.weixin.qq.com/s?__biz=MzU3OTExMzI1Mg==&mid=2247525548&idx=8&sn=431fb3ba2a9565434d2a07e1d97d900f&chksm=fd693ce7ca1eb5f16e0c6f76bee3732097a658c8188db63bec6b357d0d5e0c4c46acd89ba3b2

[偏微分方程]072半空間上的 Green 函數(shù) https://mp.weixin.qq.com/s?__biz=MzU3OTExMzI1Mg==&mid=2247525548&idx=7&sn=80be5d92c4296e1eeb9edaf2deb1abcc&chksm=fd693ce7ca1eb5f10f3d9edfb6edbafb491aebed64a49a73ac16da0e279bbb057279dc8a7d20

[偏微分方程]073Harnack 不等式 https://mp.weixin.qq.com/s?__biz=MzU3OTExMzI1Mg==&mid=2247525548&idx=1&sn=be2d7c5a0077ed547f98512b45d4d615&chksm=fd693ce7ca1eb5f108eb89172ef7b9be56144b03a650cafab92214ec0b0523ab80bc490fef0c&token=929565395&lang=zh_CN

[偏微分方程]074Liouville 定理 https://mp.weixin.qq.com/s?__biz=MzU3OTExMzI1Mg==&mid=2247525563&idx=8&sn=87b4134cc905e47b07f8a712189210ec&chksm=fd693cf0ca1eb5e6ab3ef5b3c530240969d6dd78ce241cde9fb0c15778a6be236464aff43ba8

[偏微分方程]075橢圓型方程的強極值原理 https://mp.weixin.qq.com/s?__biz=MzU3OTExMzI1Mg==&mid=2247525563&idx=7&sn=391bb836d00d69914893219d26bf8869&chksm=fd693cf0ca1eb5e6e50c5e2c2b58c2cc4b4ed818b1d28be1666a8ce9b034f8ced215ce9fcc7d

[偏微分方程]076橢圓型方程的弱極值原理 I https://mp.weixin.qq.com/s?__biz=MzU3OTExMzI1Mg==&mid=2247525563&idx=6&sn=ec3241a8e624618348ffa42413dc506a&chksm=fd693cf0ca1eb5e6e60bda20f64e21a43e90a1e8f3c23f4fdf69a95dd94912e5ceaa52bb4483

[偏微分方程]077橢圓型方程的弱極值原理 II https://mp.weixin.qq.com/s?__biz=MzU3OTExMzI1Mg==&mid=2247525563&idx=5&sn=389b0711a0f87fe93208300dc619ab7c&chksm=fd693cf0ca1eb5e6226847bd3cebbcb1e013aed925340fcbb0087745e6c0a24364333bd9581e

[偏微分方程]078不含零階項的橢圓方程的極值原理 https://mp.weixin.qq.com/s?__biz=MzU3OTExMzI1Mg==&mid=2247525563&idx=4&sn=c7e7f749ef3df566cab0288d70baeb34&chksm=fd693cf0ca1eb5e6fccbb0bbb1bd0649ff9b9e4e7f22bcd4fc5eabec080b95d6f44d8799f0b0

[偏微分方程]079球上的 Hopf 引理 https://mp.weixin.qq.com/s?__biz=MzU3OTExMzI1Mg==&mid=2247525563&idx=3&sn=e273bd4b0c4f52088376272b2af18bd4&chksm=fd693cf0ca1eb5e65d62fa3c92220bb26493b4746d800322360de68fb10014a1df5fbf6014a0

[偏微分方程]080具有內(nèi)部球條件的區(qū)域的 Hopf 引理 https://mp.weixin.qq.com/s?__biz=MzU3OTExMzI1Mg==&mid=2247525570&idx=8&sn=5d4ae30b147a73064fad5da90b48b336&chksm=fd693c89ca1eb59f80dab9b166efad33d8025442d8ed5e37012aadc1f5a9ec453ec0bad19f79&token=929565395&lang=zh_CN

[偏微分方程]081橢圓型方程 Dirichlet 內(nèi)問題解的唯一性和穩(wěn)定性 https://mp.weixin.qq.com/s?__biz=MzU3OTExMzI1Mg==&mid=2247525570&idx=7&sn=da48e33988c225442c632a3708761479&chksm=fd693c89ca1eb59f13c3173597c1228afcbbd984a679a9f5862133bc0570dfd55ffaf78605ae

[偏微分方程]082橢圓型方程 Dirichlet 外問題解的唯一性和穩(wěn)定性 https://mp.weixin.qq.com/s?__biz=MzU3OTExMzI1Mg==&mid=2247525570&idx=6&sn=71d1c67253aaf52a8c42b2ff45ee41de&chksm=fd693c89ca1eb59f4667f369c2b5002aa71cd7602e2dc9be16b8c7d92a63a11698c2196b5de6

[偏微分方程]083橢圓型方程 Dirichlet 外問題一定要附加無窮遠處的解的性態(tài) https://mp.weixin.qq.com/s?__biz=MzU3OTExMzI1Mg==&mid=2247525570&idx=5&sn=8337d7d0f1231f7b58f7be252643b989&chksm=fd693c89ca1eb59f09406ea4bc717bf5f985605270b4151094cc0126bb9c9c5e0329db15055b

[偏微分方程]084橢圓型方程 Neumann 內(nèi)問題解的唯一性 https://mp.weixin.qq.com/s?__biz=MzU3OTExMzI1Mg==&mid=2247525570&idx=4&sn=dd1435f95ada1d6c30ecab484c5a12cd&chksm=fd693c89ca1eb59fc276494714eb4bb36cf8a3aff3b630c387610085629dd1d0c97437d778a3

[偏微分方程]085橢圓型方程 Neumann 外問題解的唯一性 https://mp.weixin.qq.com/s?__biz=MzU3OTExMzI1Mg==&mid=2247525570&idx=3&sn=d096a92eb55f599a1a9bb49d7b6c4920&chksm=fd693c89ca1eb59f33e01f21c226540e980142b64ca75a0b543350e4b14ba1bfd598e7d54bc3

[偏微分方程]086橢圓型方程 Robin 邊值問題解的唯一性 https://mp.weixin.qq.com/s?__biz=MzU3OTExMzI1Mg==&mid=2247525598&idx=8&sn=76cb573ec3fe48144df0b8a80268a328&chksm=fd693c95ca1eb583f3ca666df0a39fa141cd5e917c5d14d1bac492d42b23f14b318013e731d5

[偏微分方程]087Fourier 變換的定義 https://mp.weixin.qq.com/s?__biz=MzU3OTExMzI1Mg==&mid=2247525598&idx=7&sn=57995ce02984c92cc822ff8127076606&chksm=fd693c95ca1eb58393b9a0b081fc29a63195195f783d3b32109b9b3e88963f7c691cb842de08

[偏微分方程]088Fourier 積分定理 https://mp.weixin.qq.com/s?__biz=MzU3OTExMzI1Mg==&mid=2247525598&idx=6&sn=ad1171e73f4e87ef7d47d01327a4adae&chksm=fd693c95ca1eb5838988a81a354054b560b52ce2a9fb95396cfc1a242136a0dd65191aeb0177

[偏微分方程]089Fourier 變換的基本性質(zhì) https://mp.weixin.qq.com/s?__biz=MzU3OTExMzI1Mg==&mid=2247525598&idx=5&sn=c74f8e63a894d11cfd858b6fda3977cb&chksm=fd693c95ca1eb583904d416076466bc227675a3fedb49930fdadb266aae6d56c46bde6e33956&token=1448526338&lang=zh_CN

[偏微分方程]090Fourier 變換的例子 https://mp.weixin.qq.com/s?__biz=MzU3OTExMzI1Mg==&mid=2247525598&idx=4&sn=4b33e63127b28bfe5d3dcceb13e5434d&chksm=fd693c95ca1eb58390b3134d9d6d708db91ff64693081540da01980af86c4cc3892a0bae0f25

[偏微分方程]091高維空間的 Fourier 變換 https://mp.weixin.qq.com/s?__biz=MzU3OTExMzI1Mg==&mid=2247525598&idx=3&sn=2e693d8144f00eaa9723d5039413dbfe&chksm=fd693c95ca1eb5830b0e380427ff9213072653c2a5208a09129f86c173a67b2f303ac50ab4c2

[偏微分方程]092用 Fourier 變換法求解熱傳導方程的 Cauchy 問題 https://mp.weixin.qq.com/s?__biz=MzU3OTExMzI1Mg==&mid=2247525673&idx=5&sn=35acfe136772b68385e31145fbfab7ca&chksm=fd693d62ca1eb474479d33c93b430cb4b161631d6458dd8f4fcce24dce26312526f08da7f9c0

[偏微分方程]093用 Fourier 變換法求解一維齊次波動方程的 Cauchy 問題 https://mp.weixin.qq.com/s?__biz=MzU3OTExMzI1Mg==&mid=2247525673&idx=4&sn=14542996ee976cf0d62cc0da14f215fb&chksm=fd693d62ca1eb4740fed2cea22625a7e5800b35051416f2fc4030edea0ccb9c31d171fb48518

[偏微分方程]094用 Fourier 變換法求解上半平面上的 Dirichlet 問題 https://mp.weixin.qq.com/s?__biz=MzU3OTExMzI1Mg==&mid=2247525673&idx=3&sn=aaa94f682dac72b178f7b6328854a977&chksm=fd693d62ca1eb474f2cc5ad294fe7f1f37fb63f9d2f431231fe372593a462ea8891d771ceb7e


朱長江阮立志偏微分方程簡明教程內(nèi)容提要的評論 (共 條)

分享到微博請遵守國家法律
沧州市| 凌源市| 永昌县| 拉萨市| 巴楚县| 和硕县| 慈溪市| 昌宁县| 永春县| 巩义市| 开平市| 尉氏县| 霍邱县| 玉环县| 铅山县| 阳山县| 乌拉特后旗| 大港区| 新野县| 运城市| 永仁县| 靖江市| 中阳县| 青川县| 托克逊县| 张家川| 茶陵县| 赤峰市| 隆昌县| 手游| 宾川县| 同仁县| 休宁县| 台南县| 台州市| 麻栗坡县| 丹巴县| 吐鲁番市| 巫溪县| 同仁县| 徐闻县|