最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網(wǎng) 會(huì)員登陸 & 注冊(cè)

奧賽一本通題目精講 函數(shù)專題 1157 哥德巴赫猜想

2022-04-27 06:36 作者:老頑童崔坤  | 我要投稿

每個(gè)大于等于9的奇數(shù)都是3+兩個(gè)奇素?cái)?shù)之和

崔坤

中國(guó)青島即墨,266200,E-mail:cwkzq@126.com

摘要: 數(shù)學(xué)家劉建亞在《哥德巴赫猜想與潘承洞》中說(shuō):“我們可以把這個(gè)問(wèn)題反過(guò)來(lái)思考, 已知奇數(shù)N可以表成三個(gè)素?cái)?shù)之和, 假如又能證明這三個(gè)素?cái)?shù)中有一個(gè)非常小,譬如說(shuō)第一個(gè)素?cái)?shù)可以總?cè)?, 那么我們也就證明了偶數(shù)的哥德巴赫猜想?!保?直到2013年才有秘魯數(shù)學(xué)家哈羅德賀歐夫格特徹底證明了三素?cái)?shù)定理。

關(guān)鍵詞:三素?cái)?shù)定理,奇素?cái)?shù),加法交換律結(jié)合律

中圖分類號(hào):O156 文獻(xiàn)標(biāo)識(shí)碼: A

證明:

根據(jù)2013年秘魯數(shù)學(xué)家哈羅德·賀歐夫格特已經(jīng)徹底地證明了的三素?cái)?shù)定理:

每個(gè)大于等于9的奇數(shù)都是三個(gè)奇素?cái)?shù)之和,每個(gè)奇素?cái)?shù)都可以重復(fù)使用。

它用下列公式表示:Q是每個(gè)≥9的奇數(shù),奇素?cái)?shù):q1≥3,q2≥3,q3≥3,

則Q=q1+q2+q3

根據(jù)加法交換律結(jié)合律,不妨設(shè):q1≥q2≥q3≥3,

則Q-3=q1+q2+q3-3 顯見(jiàn):有且僅有q3=3時(shí),Q-3=q1+q2,否則,奇數(shù)9,11,13都是三素?cái)?shù)定理的反例。

即每個(gè)大于等于6的偶數(shù)都是兩個(gè)奇素?cái)?shù)之和

推論Q=3+q1+q2,即每個(gè)大于等于9的奇數(shù)都是3+兩個(gè)奇素?cái)?shù)之和。

我們運(yùn)用數(shù)學(xué)歸納法做如下證明:

給出首項(xiàng)為9,公差為2的等差數(shù)列:Qn=7+2n:{9,11,13,15,17,.....}

Q1= 9

Q2= 11

Q3= 13

Q4= 15

.......

Qn=7+2n=3+q1+q2,(其中奇素?cái)?shù)q1≥q2≥3,奇數(shù)Qn≥9,n為正整數(shù))

數(shù)學(xué)歸納法:

第一步:當(dāng)n=1時(shí) ,Q1=9 時(shí) ,Q1=9=3+q1+q2=3+3+3成立

第二步:假設(shè) :n=k時(shí),Qk=3+qk1+qk2成立,奇素?cái)?shù):qk1≥3,qk2≥3

當(dāng)n=k+1時(shí),Q(k+1)=Qk+2=3+qk1+qk2+2,

此時(shí)有且僅有2種情況:

A情況:qk1+2不為素?cái)?shù)或者qk2+2不為素?cái)?shù)時(shí),Qk+2=Q(k+1)=5+qk1+qk2

即每個(gè)大于等于11的奇數(shù)都是5+兩個(gè)奇素?cái)?shù)之和,

而這個(gè)結(jié)論與“每個(gè)大于等于9的奇數(shù)都是3+兩個(gè)奇素?cái)?shù)之和”是等價(jià)的

即3+qk1+qk2+2=3+qk3+qk4,奇素?cái)?shù):qk3≥3,qk4≥3

B情況:

(1)若qk1+2為qk1的孿生素?cái)?shù)P,

則:Qk+2=3+P+qk2,即每個(gè)大于等于11的奇數(shù)都是3+兩個(gè)奇素?cái)?shù)之和

(2) 若qk2+2為qk2的孿生素?cái)?shù)P”,

則:Qk+2=3+P”+qk1,即每個(gè)大于等于11的奇數(shù)都是3+兩個(gè)奇素?cái)?shù)之和

綜上所述,對(duì)于任意正整數(shù)n命題均成立,即:每個(gè)大于等于9的奇數(shù)都是3+兩個(gè)奇素?cái)?shù)之和

結(jié)論:每個(gè)大于等于9的奇數(shù)都是3+兩個(gè)奇素?cái)?shù)之和,Q=3+q1+q2,(奇素?cái)?shù)q1≥q2≥3,奇數(shù)Q≥9)


參考文獻(xiàn):

[1] Major Arcs for Goldbach's Theorem. Arxiv [Reference date 2013-12-18]

[2] Minor arcs for Goldbach's problem.Arxiv [Reference date 2013-12-18]每個(gè)大于等于9的奇數(shù)都是3+兩個(gè)奇素?cái)?shù)之和

崔坤

中國(guó)青島即墨,266200,E-mail:cwkzq@126.com

摘要: 數(shù)學(xué)家劉建亞在《哥德巴赫猜想與潘承洞》中說(shuō):“我們可以把這個(gè)問(wèn)題反過(guò)來(lái)思考, 已知奇數(shù)N可以表成三個(gè)素?cái)?shù)之和, 假如又能證明這三個(gè)素?cái)?shù)中有一個(gè)非常小,譬如說(shuō)第一個(gè)素?cái)?shù)可以總?cè)?, 那么我們也就證明了偶數(shù)的哥德巴赫猜想。”, 直到2013年才有秘魯數(shù)學(xué)家哈羅德賀歐夫格特徹底證明了三素?cái)?shù)定理。

關(guān)鍵詞:三素?cái)?shù)定理,奇素?cái)?shù),加法交換律結(jié)合律

中圖分類號(hào):O156 文獻(xiàn)標(biāo)識(shí)碼: A

證明:

根據(jù)2013年秘魯數(shù)學(xué)家哈羅德·賀歐夫格特已經(jīng)徹底地證明了的三素?cái)?shù)定理:

每個(gè)大于等于9的奇數(shù)都是三個(gè)奇素?cái)?shù)之和,每個(gè)奇素?cái)?shù)都可以重復(fù)使用。

它用下列公式表示:Q是每個(gè)≥9的奇數(shù),奇素?cái)?shù):q1≥3,q2≥3,q3≥3,

則Q=q1+q2+q3

根據(jù)加法交換律結(jié)合律,不妨設(shè):q1≥q2≥q3≥3,

則Q-3=q1+q2+q3-3 顯見(jiàn):有且僅有q3=3時(shí),Q-3=q1+q2,否則,奇數(shù)9,11,13都是三素?cái)?shù)定理的反例。

即每個(gè)大于等于6的偶數(shù)都是兩個(gè)奇素?cái)?shù)之和

推論Q=3+q1+q2,即每個(gè)大于等于9的奇數(shù)都是3+兩個(gè)奇素?cái)?shù)之和。

我們運(yùn)用數(shù)學(xué)歸納法做如下證明:

給出首項(xiàng)為9,公差為2的等差數(shù)列:Qn=7+2n:{9,11,13,15,17,.....}

Q1= 9

Q2= 11

Q3= 13

Q4= 15

.......

Qn=7+2n=3+q1+q2,(其中奇素?cái)?shù)q1≥q2≥3,奇數(shù)Qn≥9,n為正整數(shù))

數(shù)學(xué)歸納法:

第一步:當(dāng)n=1時(shí) ,Q1=9 時(shí) ,Q1=9=3+q1+q2=3+3+3成立

第二步:假設(shè) :n=k時(shí),Qk=3+qk1+qk2成立,奇素?cái)?shù):qk1≥3,qk2≥3

當(dāng)n=k+1時(shí),Q(k+1)=Qk+2=3+qk1+qk2+2,

此時(shí)有且僅有2種情況:

A情況:qk1+2不為素?cái)?shù)或者qk2+2不為素?cái)?shù)時(shí),Qk+2=Q(k+1)=5+qk1+qk2

即每個(gè)大于等于11的奇數(shù)都是5+兩個(gè)奇素?cái)?shù)之和,

而這個(gè)結(jié)論與“每個(gè)大于等于9的奇數(shù)都是3+兩個(gè)奇素?cái)?shù)之和”是等價(jià)的

即3+qk1+qk2+2=3+qk3+qk4,奇素?cái)?shù):qk3≥3,qk4≥3

B情況:

(1)若qk1+2為qk1的孿生素?cái)?shù)P,

則:Qk+2=3+P+qk2,即每個(gè)大于等于11的奇數(shù)都是3+兩個(gè)奇素?cái)?shù)之和

(2) 若qk2+2為qk2的孿生素?cái)?shù)P”,

則:Qk+2=3+P”+qk1,即每個(gè)大于等于11的奇數(shù)都是3+兩個(gè)奇素?cái)?shù)之和

綜上所述,對(duì)于任意正整數(shù)n命題均成立,即:每個(gè)大于等于9的奇數(shù)都是3+兩個(gè)奇素?cái)?shù)之和

結(jié)論:每個(gè)大于等于9的奇數(shù)都是3+兩個(gè)奇素?cái)?shù)之和,Q=3+q1+q2,(奇素?cái)?shù)q1≥q2≥3,奇數(shù)Q≥9)


參考文獻(xiàn):

[1] Major Arcs for Goldbach's Theorem. Arxiv [Reference date 2013-12-18]

[2] Minor arcs for Goldbach's problem.Arxiv [Reference date 2013-12-18]

奧賽一本通題目精講 函數(shù)專題 1157 哥德巴赫猜想的評(píng)論 (共 條)

分享到微博請(qǐng)遵守國(guó)家法律
防城港市| 宝兴县| 白城市| 瓦房店市| 南昌市| 西畴县| 台南市| 图木舒克市| 武宁县| 龙里县| 莱州市| 和硕县| 旌德县| 惠东县| 启东市| 邵阳县| 宜都市| 普定县| 潞西市| 利川市| 孟津县| 恩平市| 敖汉旗| 鄂托克前旗| 华蓥市| 南丰县| 如东县| 开封县| 洛扎县| 始兴县| 大田县| 保定市| 临海市| 三河市| 霍城县| 乐清市| 祁东县| 同仁县| 芜湖县| 遵义县| 顺义区|