最美情侣中文字幕电影,在线麻豆精品传媒,在线网站高清黄,久久黄色视频

歡迎光臨散文網(wǎng) 會(huì)員登陸 & 注冊(cè)

淺談高等數(shù)學(xué)(9)

2022-03-13 17:22 作者:-YD-LM-  | 我要投稿

我們現(xiàn)在要對(duì)先前留下的“更精確”進(jìn)行深入研究。研究的過程中,我們發(fā)現(xiàn),僅僅求一次導(dǎo)就只能得到%5Cmathrm%20dy%3Df'(x)%5Cmathrm%20dx這樣的公式,無法再進(jìn)行下去。事實(shí)上,結(jié)果是:多次求導(dǎo)正好可以解決這樣的問題。

第九期? 高階差分與導(dǎo)數(shù)(1)

需要注意的是,本期的內(nèi)容并未依照教材敘述,而是與高階導(dǎo)數(shù)相結(jié)合地?cái)U(kuò)充了一些組合、級(jí)數(shù)方面的知識(shí),滲透一些無窮級(jí)數(shù)的思想。

首先,引入“差分”的概念:

定義? 若f(x)x的函數(shù),則f(x%2B1)-f(x)稱作f(x)的差分,記作%5CDelta%20f(x)。%5CDelta%20f(x)的差分%5CDelta%5E%7Br-1%7Df(x)的差分稱作f(x)r階差分,記作%5CDelta%20%5Erf(x)。

經(jīng)過計(jì)算,又發(fā)現(xiàn):

%5CDelta%20%5E2f(x)%3Df(x%2B2)-2f(x%2B1)%2Bf(x)

%5CDelta%20%5E3f(x)%3Df(x%2B3)-3f(x%2B2)%2B3f(x%2B1)-f(x)

事實(shí)上,我們通過數(shù)學(xué)歸納法容易證明,

%5CDelta%20%5Eny%3D%5Csum_%7Bi%3D0%7D%5En(-1)%5E%7Bn%2Bi%7DC%5Ei_nf(x%2Bi).

這個(gè)式子非常重要,直接關(guān)系到此后的高階導(dǎo)數(shù)。仔細(xì)觀察這個(gè)式子,其實(shí)公式中每一項(xiàng)的系數(shù)與(a-b)%5En展開后的各項(xiàng)系數(shù)是對(duì)應(yīng)相等的,這可以作為該公式的一個(gè)記憶方法。設(shè)

f(x)%3Da_mx%5Em%2Ba_%7Bm-1%7Dx%5E%7Bm-1%7D%2B......%2Ba_1x%2Ba_0(a_m%5Cnot%3D0)

f(x%2B1)%3Da_m(x%2B1)%5Em%2Ba_%7Bm-1%7D(x%2B1)%5E%7Bm-1%7D%2B......%2Ba_1(x%2B1)%2Ba_0

%5CDelta%20f(x)m次項(xiàng)為a_mx%5Em-a_mx%5Em%3D0;(m-1)次項(xiàng)為a_mC%5E1_mx%5E%7Bm-1%7D%2Ba_%7Bm-1%7Dx%5E%7Bm-1%7D-a_%7Bm-1%7Dx%5E%7Bm-1%7D%3Dma_mx%5E%7Bm-1%7D,不為0.這告訴我們,m(m%5Cge1)多項(xiàng)式的差分是一個(gè)(m-1)次多項(xiàng)式。于是,有推論:m次多項(xiàng)式的m階差分為常數(shù),而其M(M%5Cge%20m)階差分為零。

下面考察這個(gè)常數(shù)究竟是什么。設(shè)據(jù)同上,求%5CDelta%20%5Em%20f(x)。由于a%5E%7Bm-1%7Dx%5E%7Bm-1%7D%2B......%2Ba_1x%2Ba_0m階差分為零,故

%5CDelta%20%5Em%20f(x)%3D%5CDelta%5Em%20(a_mx%5Em)%3D%5CDelta%20%5E%7Bm-1%7D%5Ba_m(x%2B1)%5Em-a_mx%5Em%5D

此時(shí),被差分函數(shù)的m次項(xiàng)被抵消,(m-1)次項(xiàng)為ma_m,其余項(xiàng)的(m-1)階差分為零。故而

%5CDelta%20%5Ema_mx%5Em%3D%5CDelta%20%5E%7Bm-1%7Dma_mx%5E%7Bm-1%7D%3Dm%5CDelta%20%5E%7Bm-1%7Da_mx%5E%7Bm-1%7D.

于是其又等于m(m-1)%5CDelta%20%5E%7Bm-2%7Da_mx%5E%7Bm-2%7D%3D%E2%80%A6%E2%80%A6%3Dm!a_mx%5E0%3Dm!a_m,得到了答案。

差分可以幫助我們解決一類重要的問題:整值多項(xiàng)式。這就是說,什么樣的多項(xiàng)式函數(shù),當(dāng)自變量為整數(shù)時(shí),因變量也必然為整數(shù)?我們需要一個(gè)充要條件,顯然它不可能是各項(xiàng)系數(shù)均為整數(shù)。于是,我們不由得想到了這樣一類函數(shù):組合數(shù)。我們是這樣定義的:C%5Ek_x%3D%5Cfrac%7Bx!%7D%7B(x-k)!k!%7D%3D%5Cfrac%7Bx(x-1)(x-2)%E2%80%A6%E2%80%A6(x-k%2B1)%7D%7Bk!%7D%5C%20(k%5Cge1%2Ck%5Cin%5Cmathrm%20Z)

如果我們采取后一種表達(dá),即定義域?yàn)槿w整數(shù)的函數(shù)P_k(x)%3D%5Cfrac%7Bx(x-1)(x-2)%E2%80%A6%E2%80%A6(x-k%2B1)%7D%7Bk!%7D,那情況就明朗得多了:當(dāng)x%5Cge%20k時(shí),P_k(x)%3DC%5Ek_x;當(dāng)0%5Cle%20x%5Cle%20k-1時(shí),x-i%5C%20(0%5Cle%20i%5Cle%20k-1%2Ci%5Cin%20%5Cmathrm%20Z)中必有一個(gè)為零,因而P_k(x)%3D0

當(dāng)x%3C0時(shí),P_k(x)%3D(-1)%5Ek%5Cfrac%7B(-x)(1-x)(2-x)%E2%80%A6%E2%80%A6(k-1-x)%7D%7Bk!%7D%3D(-1)%5EkC%5Ek_%7Bk-1-x%7D,

其符號(hào)與(-1)%5Ek相同。由于x%5Cle-1,故k-1-x%5Cge%20k。綜上,我們發(fā)現(xiàn)P_k(x)是整值多項(xiàng)式。由于P_k(x)為整值多項(xiàng)式,則顯然%5CDelta%20P_k(x)也為整值多項(xiàng)式。事實(shí)上,經(jīng)過計(jì)算,

%5CDelta%20P_k(x)%3D%5Cfrac1%7Bk!%7D%5B(x%2B1)x%E2%80%A6%E2%80%A6(x-k%2B2)-x(x-1)%E2%80%A6%E2%80%A6(x-k%2B1)%5D

%3D%5Cfrac1%7Bk!%7Dx(x-1)%E2%80%A6%E2%80%A6(x-k%2B2)%C2%B7k%3D%5Cfrac%7B1%7D%7B(k-1)!%7Dx(x-1)%E2%80%A6%E2%80%A6(x-k%2B2)

%3DP_%7Bk-1%7D(x).

繼續(xù)寫出幾個(gè)整值多項(xiàng)式:

x%5E2%3D2P_2(x)%2BP_1(x)%2Cx%5E3%2B3x%2B1%3D6P_3(x)%2B6P_2(x)%2B4P_1(x)%2B1

%E2%80%A6%E2%80%A6

于是,我們猜想:

任一整值多項(xiàng)式f(x)%3Da_mx%5Em%2Ba_%7Bm-1%7Dx%5E%7Bm-1%7D%2B%E2%80%A6%E2%80%A6%2Ba_1x%2Ba_0均可以表示為%5Calpha_mP_m(x)%2B%5Calpha_%7Bm-1%7DP_%7Bm-1%7D(x)%2B%E2%80%A6%E2%80%A6%2B%5Calpha_1P_1(x)%2B%5Calpha_0,其中%5Calpha_i%5Cin%5Cmathrm%20Z的形式。

證明:

先證任一多項(xiàng)式均可表示為上述形式,其中%5Calpha_i未必為整數(shù)。這一點(diǎn)可以使用數(shù)學(xué)歸納法說明。當(dāng)其為一次多項(xiàng)式%5Calpha%20x%2B%5Cbeta時(shí),取%5Calpha_1%3D%5Calpha%2C%5Calpha_0%3D%5Cbeta即可;設(shè)命題對(duì)(k-1)次多項(xiàng)式成立,則對(duì)于f(x)%3Da_kx%5Ek%2Ba_%7Bk-1%7Dx%5E%7Bk-1%7D%2B%E2%80%A6%E2%80%A6%2Ba_1x%2Ba_0,f(x)-k!a_k%20P_k(x)顯然是一個(gè)(k-1)次多項(xiàng)式,設(shè)它是%5Calpha_%7Bm-1%7DP_m-1(x)%2B%5Calpha_%7Bm-2%7DP_%7Bm-2%7D(x)%2B%E2%80%A6%E2%80%A6%2B%5Calpha_1P_1(x)%2B%5Calpha_0。令%5Calpha_k%3Dk!a_k,即得引理。

此時(shí),在此基礎(chǔ)上,設(shè)f(x)是整值多項(xiàng)式。令x%3D0,則P_1(x)%3DP_2(x)%3D%E2%80%A6%E2%80%A6%3DP_m(x)%3D0,因而%5Calpha_0%5Cin%5Cmathrm%20Z,于是%5Calpha_mP_m(x)%2B%5Calpha_%7Bm-1%7DP_%7Bm-1%7D(x)%2B%E2%80%A6%E2%80%A6%2B%5Calpha_2P_2(x)%2B%5Calpha_1P_1(x)也為整值多項(xiàng)式。再令x%3D1,則P_2(x)%3DP_3(x)%3D%E2%80%A6%E2%80%A6%3DP_m(x)%3D0,因而%5Calpha_1%5Cin%5Cmathrm%20Z,于是%5Calpha_mP_m(x)%2B%5Calpha_%7Bm-1%7DP_%7Bm-1%7D(x)%2B%E2%80%A6%E2%80%A6%2B%5Calpha_3P_3(x)%2B%5Calpha_2P_2(x)也為整值多項(xiàng)式……由于P_k(k)%3D1,因此我們可以不斷地重復(fù)上述的操作,直到%5Calpha_i%5Cin%5Cmathrm%20Z的結(jié)論。

在這些知識(shí)的鋪墊下,我們可以進(jìn)一步研究“高階等差數(shù)列”的問題:一階等差數(shù)列就是中學(xué)階段的等差數(shù)列;又定義r階等差數(shù)列的相鄰兩項(xiàng)之差順次構(gòu)成一個(gè)(r-1)階等差數(shù)列。對(duì)于它,我會(huì)出一期雜談敘述(不能扯太遠(yuǎn))

參考文獻(xiàn):

[1]數(shù)學(xué)小叢書(合訂本1).科學(xué)出版社.2018年7月第1版.P20-23

淺談高等數(shù)學(xué)(9)的評(píng)論 (共 條)

分享到微博請(qǐng)遵守國(guó)家法律
西贡区| 临潭县| 绥宁县| 张家界市| 丰台区| 延津县| 遂昌县| 辽阳市| 凤山县| 荃湾区| 淮南市| 潞城市| 乐清市| 南康市| 滨州市| 梓潼县| 尚义县| 黔南| 巴林左旗| 泰安市| 乐业县| 司法| 闽侯县| 保靖县| 宿松县| 青川县| 上虞市| 靖安县| 上蔡县| 莫力| 怀柔区| 宜君县| 望谟县| 巩留县| 印江| 仁寿县| 镇江市| 铁岭市| 千阳县| 雅江县| 北碚区|